Evaluating the potential of iron-based interventions in methane reduction and climate mitigation

Autores
Meidan, Daphne; Li, Qinyi; Cuevas, Carlos A.; Doney, Scott C.; Fernandez, Rafael Pedro; van Herpen, Maarten M. J. W.; Johnson, Matthew S.; Kinnison, Douglas E.; Li, Longlei; Hamilton, Douglas S.; Saiz López, Alfonso; Hess, Peter; Mahowald, Natalie M.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Keeping global surface temperatures below international climate targets will require substantial measures to control atmospheric CO2 and CH4 concentrations. Recent studies have focused on interventions to decrease CH4 through enhanced atmospheric oxidation. Here for the first time using a set of models, we evaluate the effect of adding iron aerosols to the atmosphere to enhance molecular chlorine production, and thus enhance the atmospheric oxidation of methane and reduce its concentration. Using different iron emission sensitivity scenarios, we examine the potential role and impact of enhanced iron emissions on direct interactions with solar radiation, and on the chemical and radiative response of methane. Our results show that the impact of iron emissions on CH4 depends sensitively on the location of the iron emissions. In all emission regions there is a threshold in the amount of iron that must be added to remove methane. Below this threshold CH4 increases. Even once that threshold is reached, the iron-aerosol driven chlorine-enhanced impacts on climate are complex. The radiative forcing of both methane and ozone are decreased in the most efficient regions but the direct effect due to the addition of absorbing iron aerosols tends to warm the planet. Adding any anthropogenic aerosol may also cool the planet due to aerosol cloud interactions, although these are very uncertain, and here we focus on the unique properties of adding iron aerosols. If the added emissions have a similar distribution as current shipping emissions, our study shows that the amount of iron aerosols that must be added before methane decreases is 2.5 times the current shipping emissions of iron aerosols, or 6 Tg Fe yr−1 in the most ideal case examined here. Our study suggests that the photoactive fraction of iron aerosols is a key variable controlling the impact of iron additions and poorly understood. More studies of the sensitivity of when, where and how iron aerosols are added should be conducted. Before seriously considering this method, additional impacts on the atmospheric chemistry, climate, environmental impacts and air pollution should be carefully assessed in future studies since they are likely to be important.
Fil: Meidan, Daphne. Cornell University; Estados Unidos
Fil: Li, Qinyi. Shandong University; China
Fil: Cuevas, Carlos A.. Consejo Superior de Investigaciones Científicas; España
Fil: Doney, Scott C.. University of Virginia; Estados Unidos
Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Fil: van Herpen, Maarten M. J. W.. Acacia Impact Innovation; Países Bajos
Fil: Johnson, Matthew S.. Universidad de Copenhagen; Dinamarca
Fil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados Unidos
Fil: Li, Longlei. Cornell University; Estados Unidos
Fil: Hamilton, Douglas S.. North Carolina State University; Estados Unidos
Fil: Saiz López, Alfonso. Consejo Superior de Investigaciones Científicas; España
Fil: Hess, Peter. Cornell University; Estados Unidos
Fil: Mahowald, Natalie M.. Cornell University; Estados Unidos
Materia
Climate Mitigation
Methane reduction
Iron-induced emissions
Chlorine chemistry
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/267858

id CONICETDig_8d7d14d052f966376bea789315afff83
oai_identifier_str oai:ri.conicet.gov.ar:11336/267858
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Evaluating the potential of iron-based interventions in methane reduction and climate mitigationMeidan, DaphneLi, QinyiCuevas, Carlos A.Doney, Scott C.Fernandez, Rafael Pedrovan Herpen, Maarten M. J. W.Johnson, Matthew S.Kinnison, Douglas E.Li, LongleiHamilton, Douglas S.Saiz López, AlfonsoHess, PeterMahowald, Natalie M.Climate MitigationMethane reductionIron-induced emissionsChlorine chemistryhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Keeping global surface temperatures below international climate targets will require substantial measures to control atmospheric CO2 and CH4 concentrations. Recent studies have focused on interventions to decrease CH4 through enhanced atmospheric oxidation. Here for the first time using a set of models, we evaluate the effect of adding iron aerosols to the atmosphere to enhance molecular chlorine production, and thus enhance the atmospheric oxidation of methane and reduce its concentration. Using different iron emission sensitivity scenarios, we examine the potential role and impact of enhanced iron emissions on direct interactions with solar radiation, and on the chemical and radiative response of methane. Our results show that the impact of iron emissions on CH4 depends sensitively on the location of the iron emissions. In all emission regions there is a threshold in the amount of iron that must be added to remove methane. Below this threshold CH4 increases. Even once that threshold is reached, the iron-aerosol driven chlorine-enhanced impacts on climate are complex. The radiative forcing of both methane and ozone are decreased in the most efficient regions but the direct effect due to the addition of absorbing iron aerosols tends to warm the planet. Adding any anthropogenic aerosol may also cool the planet due to aerosol cloud interactions, although these are very uncertain, and here we focus on the unique properties of adding iron aerosols. If the added emissions have a similar distribution as current shipping emissions, our study shows that the amount of iron aerosols that must be added before methane decreases is 2.5 times the current shipping emissions of iron aerosols, or 6 Tg Fe yr−1 in the most ideal case examined here. Our study suggests that the photoactive fraction of iron aerosols is a key variable controlling the impact of iron additions and poorly understood. More studies of the sensitivity of when, where and how iron aerosols are added should be conducted. Before seriously considering this method, additional impacts on the atmospheric chemistry, climate, environmental impacts and air pollution should be carefully assessed in future studies since they are likely to be important.Fil: Meidan, Daphne. Cornell University; Estados UnidosFil: Li, Qinyi. Shandong University; ChinaFil: Cuevas, Carlos A.. Consejo Superior de Investigaciones Científicas; EspañaFil: Doney, Scott C.. University of Virginia; Estados UnidosFil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: van Herpen, Maarten M. J. W.. Acacia Impact Innovation; Países BajosFil: Johnson, Matthew S.. Universidad de Copenhagen; DinamarcaFil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados UnidosFil: Li, Longlei. Cornell University; Estados UnidosFil: Hamilton, Douglas S.. North Carolina State University; Estados UnidosFil: Saiz López, Alfonso. Consejo Superior de Investigaciones Científicas; EspañaFil: Hess, Peter. Cornell University; Estados UnidosFil: Mahowald, Natalie M.. Cornell University; Estados UnidosIOP Publishing2024-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/267858Meidan, Daphne; Li, Qinyi; Cuevas, Carlos A.; Doney, Scott C.; Fernandez, Rafael Pedro; et al.; Evaluating the potential of iron-based interventions in methane reduction and climate mitigation; IOP Publishing; Environmental Research Letters; 19; 5; 4-2024; 1-141748-9326CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1748-9326/ad3d72info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-9326/ad3d72info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:31Zoai:ri.conicet.gov.ar:11336/267858instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:31.322CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Evaluating the potential of iron-based interventions in methane reduction and climate mitigation
title Evaluating the potential of iron-based interventions in methane reduction and climate mitigation
spellingShingle Evaluating the potential of iron-based interventions in methane reduction and climate mitigation
Meidan, Daphne
Climate Mitigation
Methane reduction
Iron-induced emissions
Chlorine chemistry
title_short Evaluating the potential of iron-based interventions in methane reduction and climate mitigation
title_full Evaluating the potential of iron-based interventions in methane reduction and climate mitigation
title_fullStr Evaluating the potential of iron-based interventions in methane reduction and climate mitigation
title_full_unstemmed Evaluating the potential of iron-based interventions in methane reduction and climate mitigation
title_sort Evaluating the potential of iron-based interventions in methane reduction and climate mitigation
dc.creator.none.fl_str_mv Meidan, Daphne
Li, Qinyi
Cuevas, Carlos A.
Doney, Scott C.
Fernandez, Rafael Pedro
van Herpen, Maarten M. J. W.
Johnson, Matthew S.
Kinnison, Douglas E.
Li, Longlei
Hamilton, Douglas S.
Saiz López, Alfonso
Hess, Peter
Mahowald, Natalie M.
author Meidan, Daphne
author_facet Meidan, Daphne
Li, Qinyi
Cuevas, Carlos A.
Doney, Scott C.
Fernandez, Rafael Pedro
van Herpen, Maarten M. J. W.
Johnson, Matthew S.
Kinnison, Douglas E.
Li, Longlei
Hamilton, Douglas S.
Saiz López, Alfonso
Hess, Peter
Mahowald, Natalie M.
author_role author
author2 Li, Qinyi
Cuevas, Carlos A.
Doney, Scott C.
Fernandez, Rafael Pedro
van Herpen, Maarten M. J. W.
Johnson, Matthew S.
Kinnison, Douglas E.
Li, Longlei
Hamilton, Douglas S.
Saiz López, Alfonso
Hess, Peter
Mahowald, Natalie M.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Climate Mitigation
Methane reduction
Iron-induced emissions
Chlorine chemistry
topic Climate Mitigation
Methane reduction
Iron-induced emissions
Chlorine chemistry
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Keeping global surface temperatures below international climate targets will require substantial measures to control atmospheric CO2 and CH4 concentrations. Recent studies have focused on interventions to decrease CH4 through enhanced atmospheric oxidation. Here for the first time using a set of models, we evaluate the effect of adding iron aerosols to the atmosphere to enhance molecular chlorine production, and thus enhance the atmospheric oxidation of methane and reduce its concentration. Using different iron emission sensitivity scenarios, we examine the potential role and impact of enhanced iron emissions on direct interactions with solar radiation, and on the chemical and radiative response of methane. Our results show that the impact of iron emissions on CH4 depends sensitively on the location of the iron emissions. In all emission regions there is a threshold in the amount of iron that must be added to remove methane. Below this threshold CH4 increases. Even once that threshold is reached, the iron-aerosol driven chlorine-enhanced impacts on climate are complex. The radiative forcing of both methane and ozone are decreased in the most efficient regions but the direct effect due to the addition of absorbing iron aerosols tends to warm the planet. Adding any anthropogenic aerosol may also cool the planet due to aerosol cloud interactions, although these are very uncertain, and here we focus on the unique properties of adding iron aerosols. If the added emissions have a similar distribution as current shipping emissions, our study shows that the amount of iron aerosols that must be added before methane decreases is 2.5 times the current shipping emissions of iron aerosols, or 6 Tg Fe yr−1 in the most ideal case examined here. Our study suggests that the photoactive fraction of iron aerosols is a key variable controlling the impact of iron additions and poorly understood. More studies of the sensitivity of when, where and how iron aerosols are added should be conducted. Before seriously considering this method, additional impacts on the atmospheric chemistry, climate, environmental impacts and air pollution should be carefully assessed in future studies since they are likely to be important.
Fil: Meidan, Daphne. Cornell University; Estados Unidos
Fil: Li, Qinyi. Shandong University; China
Fil: Cuevas, Carlos A.. Consejo Superior de Investigaciones Científicas; España
Fil: Doney, Scott C.. University of Virginia; Estados Unidos
Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Fil: van Herpen, Maarten M. J. W.. Acacia Impact Innovation; Países Bajos
Fil: Johnson, Matthew S.. Universidad de Copenhagen; Dinamarca
Fil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados Unidos
Fil: Li, Longlei. Cornell University; Estados Unidos
Fil: Hamilton, Douglas S.. North Carolina State University; Estados Unidos
Fil: Saiz López, Alfonso. Consejo Superior de Investigaciones Científicas; España
Fil: Hess, Peter. Cornell University; Estados Unidos
Fil: Mahowald, Natalie M.. Cornell University; Estados Unidos
description Keeping global surface temperatures below international climate targets will require substantial measures to control atmospheric CO2 and CH4 concentrations. Recent studies have focused on interventions to decrease CH4 through enhanced atmospheric oxidation. Here for the first time using a set of models, we evaluate the effect of adding iron aerosols to the atmosphere to enhance molecular chlorine production, and thus enhance the atmospheric oxidation of methane and reduce its concentration. Using different iron emission sensitivity scenarios, we examine the potential role and impact of enhanced iron emissions on direct interactions with solar radiation, and on the chemical and radiative response of methane. Our results show that the impact of iron emissions on CH4 depends sensitively on the location of the iron emissions. In all emission regions there is a threshold in the amount of iron that must be added to remove methane. Below this threshold CH4 increases. Even once that threshold is reached, the iron-aerosol driven chlorine-enhanced impacts on climate are complex. The radiative forcing of both methane and ozone are decreased in the most efficient regions but the direct effect due to the addition of absorbing iron aerosols tends to warm the planet. Adding any anthropogenic aerosol may also cool the planet due to aerosol cloud interactions, although these are very uncertain, and here we focus on the unique properties of adding iron aerosols. If the added emissions have a similar distribution as current shipping emissions, our study shows that the amount of iron aerosols that must be added before methane decreases is 2.5 times the current shipping emissions of iron aerosols, or 6 Tg Fe yr−1 in the most ideal case examined here. Our study suggests that the photoactive fraction of iron aerosols is a key variable controlling the impact of iron additions and poorly understood. More studies of the sensitivity of when, where and how iron aerosols are added should be conducted. Before seriously considering this method, additional impacts on the atmospheric chemistry, climate, environmental impacts and air pollution should be carefully assessed in future studies since they are likely to be important.
publishDate 2024
dc.date.none.fl_str_mv 2024-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/267858
Meidan, Daphne; Li, Qinyi; Cuevas, Carlos A.; Doney, Scott C.; Fernandez, Rafael Pedro; et al.; Evaluating the potential of iron-based interventions in methane reduction and climate mitigation; IOP Publishing; Environmental Research Letters; 19; 5; 4-2024; 1-14
1748-9326
CONICET Digital
CONICET
url http://hdl.handle.net/11336/267858
identifier_str_mv Meidan, Daphne; Li, Qinyi; Cuevas, Carlos A.; Doney, Scott C.; Fernandez, Rafael Pedro; et al.; Evaluating the potential of iron-based interventions in methane reduction and climate mitigation; IOP Publishing; Environmental Research Letters; 19; 5; 4-2024; 1-14
1748-9326
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1748-9326/ad3d72
info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-9326/ad3d72
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269915023671296
score 13.13397