Evaluating the potential of iron-based interventions in methane reduction and climate mitigation
- Autores
- Meidan, Daphne; Li, Qinyi; Cuevas, Carlos A.; Doney, Scott C.; Fernandez, Rafael Pedro; van Herpen, Maarten M. J. W.; Johnson, Matthew S.; Kinnison, Douglas E.; Li, Longlei; Hamilton, Douglas S.; Saiz López, Alfonso; Hess, Peter; Mahowald, Natalie M.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Keeping global surface temperatures below international climate targets will require substantial measures to control atmospheric CO2 and CH4 concentrations. Recent studies have focused on interventions to decrease CH4 through enhanced atmospheric oxidation. Here for the first time using a set of models, we evaluate the effect of adding iron aerosols to the atmosphere to enhance molecular chlorine production, and thus enhance the atmospheric oxidation of methane and reduce its concentration. Using different iron emission sensitivity scenarios, we examine the potential role and impact of enhanced iron emissions on direct interactions with solar radiation, and on the chemical and radiative response of methane. Our results show that the impact of iron emissions on CH4 depends sensitively on the location of the iron emissions. In all emission regions there is a threshold in the amount of iron that must be added to remove methane. Below this threshold CH4 increases. Even once that threshold is reached, the iron-aerosol driven chlorine-enhanced impacts on climate are complex. The radiative forcing of both methane and ozone are decreased in the most efficient regions but the direct effect due to the addition of absorbing iron aerosols tends to warm the planet. Adding any anthropogenic aerosol may also cool the planet due to aerosol cloud interactions, although these are very uncertain, and here we focus on the unique properties of adding iron aerosols. If the added emissions have a similar distribution as current shipping emissions, our study shows that the amount of iron aerosols that must be added before methane decreases is 2.5 times the current shipping emissions of iron aerosols, or 6 Tg Fe yr−1 in the most ideal case examined here. Our study suggests that the photoactive fraction of iron aerosols is a key variable controlling the impact of iron additions and poorly understood. More studies of the sensitivity of when, where and how iron aerosols are added should be conducted. Before seriously considering this method, additional impacts on the atmospheric chemistry, climate, environmental impacts and air pollution should be carefully assessed in future studies since they are likely to be important.
Fil: Meidan, Daphne. Cornell University; Estados Unidos
Fil: Li, Qinyi. Shandong University; China
Fil: Cuevas, Carlos A.. Consejo Superior de Investigaciones Científicas; España
Fil: Doney, Scott C.. University of Virginia; Estados Unidos
Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina
Fil: van Herpen, Maarten M. J. W.. Acacia Impact Innovation; Países Bajos
Fil: Johnson, Matthew S.. Universidad de Copenhagen; Dinamarca
Fil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados Unidos
Fil: Li, Longlei. Cornell University; Estados Unidos
Fil: Hamilton, Douglas S.. North Carolina State University; Estados Unidos
Fil: Saiz López, Alfonso. Consejo Superior de Investigaciones Científicas; España
Fil: Hess, Peter. Cornell University; Estados Unidos
Fil: Mahowald, Natalie M.. Cornell University; Estados Unidos - Materia
-
Climate Mitigation
Methane reduction
Iron-induced emissions
Chlorine chemistry - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/267858
Ver los metadatos del registro completo
id |
CONICETDig_8d7d14d052f966376bea789315afff83 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/267858 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Evaluating the potential of iron-based interventions in methane reduction and climate mitigationMeidan, DaphneLi, QinyiCuevas, Carlos A.Doney, Scott C.Fernandez, Rafael Pedrovan Herpen, Maarten M. J. W.Johnson, Matthew S.Kinnison, Douglas E.Li, LongleiHamilton, Douglas S.Saiz López, AlfonsoHess, PeterMahowald, Natalie M.Climate MitigationMethane reductionIron-induced emissionsChlorine chemistryhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Keeping global surface temperatures below international climate targets will require substantial measures to control atmospheric CO2 and CH4 concentrations. Recent studies have focused on interventions to decrease CH4 through enhanced atmospheric oxidation. Here for the first time using a set of models, we evaluate the effect of adding iron aerosols to the atmosphere to enhance molecular chlorine production, and thus enhance the atmospheric oxidation of methane and reduce its concentration. Using different iron emission sensitivity scenarios, we examine the potential role and impact of enhanced iron emissions on direct interactions with solar radiation, and on the chemical and radiative response of methane. Our results show that the impact of iron emissions on CH4 depends sensitively on the location of the iron emissions. In all emission regions there is a threshold in the amount of iron that must be added to remove methane. Below this threshold CH4 increases. Even once that threshold is reached, the iron-aerosol driven chlorine-enhanced impacts on climate are complex. The radiative forcing of both methane and ozone are decreased in the most efficient regions but the direct effect due to the addition of absorbing iron aerosols tends to warm the planet. Adding any anthropogenic aerosol may also cool the planet due to aerosol cloud interactions, although these are very uncertain, and here we focus on the unique properties of adding iron aerosols. If the added emissions have a similar distribution as current shipping emissions, our study shows that the amount of iron aerosols that must be added before methane decreases is 2.5 times the current shipping emissions of iron aerosols, or 6 Tg Fe yr−1 in the most ideal case examined here. Our study suggests that the photoactive fraction of iron aerosols is a key variable controlling the impact of iron additions and poorly understood. More studies of the sensitivity of when, where and how iron aerosols are added should be conducted. Before seriously considering this method, additional impacts on the atmospheric chemistry, climate, environmental impacts and air pollution should be carefully assessed in future studies since they are likely to be important.Fil: Meidan, Daphne. Cornell University; Estados UnidosFil: Li, Qinyi. Shandong University; ChinaFil: Cuevas, Carlos A.. Consejo Superior de Investigaciones Científicas; EspañaFil: Doney, Scott C.. University of Virginia; Estados UnidosFil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: van Herpen, Maarten M. J. W.. Acacia Impact Innovation; Países BajosFil: Johnson, Matthew S.. Universidad de Copenhagen; DinamarcaFil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados UnidosFil: Li, Longlei. Cornell University; Estados UnidosFil: Hamilton, Douglas S.. North Carolina State University; Estados UnidosFil: Saiz López, Alfonso. Consejo Superior de Investigaciones Científicas; EspañaFil: Hess, Peter. Cornell University; Estados UnidosFil: Mahowald, Natalie M.. Cornell University; Estados UnidosIOP Publishing2024-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/267858Meidan, Daphne; Li, Qinyi; Cuevas, Carlos A.; Doney, Scott C.; Fernandez, Rafael Pedro; et al.; Evaluating the potential of iron-based interventions in methane reduction and climate mitigation; IOP Publishing; Environmental Research Letters; 19; 5; 4-2024; 1-141748-9326CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1748-9326/ad3d72info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-9326/ad3d72info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:31Zoai:ri.conicet.gov.ar:11336/267858instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:31.322CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Evaluating the potential of iron-based interventions in methane reduction and climate mitigation |
title |
Evaluating the potential of iron-based interventions in methane reduction and climate mitigation |
spellingShingle |
Evaluating the potential of iron-based interventions in methane reduction and climate mitigation Meidan, Daphne Climate Mitigation Methane reduction Iron-induced emissions Chlorine chemistry |
title_short |
Evaluating the potential of iron-based interventions in methane reduction and climate mitigation |
title_full |
Evaluating the potential of iron-based interventions in methane reduction and climate mitigation |
title_fullStr |
Evaluating the potential of iron-based interventions in methane reduction and climate mitigation |
title_full_unstemmed |
Evaluating the potential of iron-based interventions in methane reduction and climate mitigation |
title_sort |
Evaluating the potential of iron-based interventions in methane reduction and climate mitigation |
dc.creator.none.fl_str_mv |
Meidan, Daphne Li, Qinyi Cuevas, Carlos A. Doney, Scott C. Fernandez, Rafael Pedro van Herpen, Maarten M. J. W. Johnson, Matthew S. Kinnison, Douglas E. Li, Longlei Hamilton, Douglas S. Saiz López, Alfonso Hess, Peter Mahowald, Natalie M. |
author |
Meidan, Daphne |
author_facet |
Meidan, Daphne Li, Qinyi Cuevas, Carlos A. Doney, Scott C. Fernandez, Rafael Pedro van Herpen, Maarten M. J. W. Johnson, Matthew S. Kinnison, Douglas E. Li, Longlei Hamilton, Douglas S. Saiz López, Alfonso Hess, Peter Mahowald, Natalie M. |
author_role |
author |
author2 |
Li, Qinyi Cuevas, Carlos A. Doney, Scott C. Fernandez, Rafael Pedro van Herpen, Maarten M. J. W. Johnson, Matthew S. Kinnison, Douglas E. Li, Longlei Hamilton, Douglas S. Saiz López, Alfonso Hess, Peter Mahowald, Natalie M. |
author2_role |
author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Climate Mitigation Methane reduction Iron-induced emissions Chlorine chemistry |
topic |
Climate Mitigation Methane reduction Iron-induced emissions Chlorine chemistry |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Keeping global surface temperatures below international climate targets will require substantial measures to control atmospheric CO2 and CH4 concentrations. Recent studies have focused on interventions to decrease CH4 through enhanced atmospheric oxidation. Here for the first time using a set of models, we evaluate the effect of adding iron aerosols to the atmosphere to enhance molecular chlorine production, and thus enhance the atmospheric oxidation of methane and reduce its concentration. Using different iron emission sensitivity scenarios, we examine the potential role and impact of enhanced iron emissions on direct interactions with solar radiation, and on the chemical and radiative response of methane. Our results show that the impact of iron emissions on CH4 depends sensitively on the location of the iron emissions. In all emission regions there is a threshold in the amount of iron that must be added to remove methane. Below this threshold CH4 increases. Even once that threshold is reached, the iron-aerosol driven chlorine-enhanced impacts on climate are complex. The radiative forcing of both methane and ozone are decreased in the most efficient regions but the direct effect due to the addition of absorbing iron aerosols tends to warm the planet. Adding any anthropogenic aerosol may also cool the planet due to aerosol cloud interactions, although these are very uncertain, and here we focus on the unique properties of adding iron aerosols. If the added emissions have a similar distribution as current shipping emissions, our study shows that the amount of iron aerosols that must be added before methane decreases is 2.5 times the current shipping emissions of iron aerosols, or 6 Tg Fe yr−1 in the most ideal case examined here. Our study suggests that the photoactive fraction of iron aerosols is a key variable controlling the impact of iron additions and poorly understood. More studies of the sensitivity of when, where and how iron aerosols are added should be conducted. Before seriously considering this method, additional impacts on the atmospheric chemistry, climate, environmental impacts and air pollution should be carefully assessed in future studies since they are likely to be important. Fil: Meidan, Daphne. Cornell University; Estados Unidos Fil: Li, Qinyi. Shandong University; China Fil: Cuevas, Carlos A.. Consejo Superior de Investigaciones Científicas; España Fil: Doney, Scott C.. University of Virginia; Estados Unidos Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina Fil: van Herpen, Maarten M. J. W.. Acacia Impact Innovation; Países Bajos Fil: Johnson, Matthew S.. Universidad de Copenhagen; Dinamarca Fil: Kinnison, Douglas E.. National Center for Atmospheric Research; Estados Unidos Fil: Li, Longlei. Cornell University; Estados Unidos Fil: Hamilton, Douglas S.. North Carolina State University; Estados Unidos Fil: Saiz López, Alfonso. Consejo Superior de Investigaciones Científicas; España Fil: Hess, Peter. Cornell University; Estados Unidos Fil: Mahowald, Natalie M.. Cornell University; Estados Unidos |
description |
Keeping global surface temperatures below international climate targets will require substantial measures to control atmospheric CO2 and CH4 concentrations. Recent studies have focused on interventions to decrease CH4 through enhanced atmospheric oxidation. Here for the first time using a set of models, we evaluate the effect of adding iron aerosols to the atmosphere to enhance molecular chlorine production, and thus enhance the atmospheric oxidation of methane and reduce its concentration. Using different iron emission sensitivity scenarios, we examine the potential role and impact of enhanced iron emissions on direct interactions with solar radiation, and on the chemical and radiative response of methane. Our results show that the impact of iron emissions on CH4 depends sensitively on the location of the iron emissions. In all emission regions there is a threshold in the amount of iron that must be added to remove methane. Below this threshold CH4 increases. Even once that threshold is reached, the iron-aerosol driven chlorine-enhanced impacts on climate are complex. The radiative forcing of both methane and ozone are decreased in the most efficient regions but the direct effect due to the addition of absorbing iron aerosols tends to warm the planet. Adding any anthropogenic aerosol may also cool the planet due to aerosol cloud interactions, although these are very uncertain, and here we focus on the unique properties of adding iron aerosols. If the added emissions have a similar distribution as current shipping emissions, our study shows that the amount of iron aerosols that must be added before methane decreases is 2.5 times the current shipping emissions of iron aerosols, or 6 Tg Fe yr−1 in the most ideal case examined here. Our study suggests that the photoactive fraction of iron aerosols is a key variable controlling the impact of iron additions and poorly understood. More studies of the sensitivity of when, where and how iron aerosols are added should be conducted. Before seriously considering this method, additional impacts on the atmospheric chemistry, climate, environmental impacts and air pollution should be carefully assessed in future studies since they are likely to be important. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/267858 Meidan, Daphne; Li, Qinyi; Cuevas, Carlos A.; Doney, Scott C.; Fernandez, Rafael Pedro; et al.; Evaluating the potential of iron-based interventions in methane reduction and climate mitigation; IOP Publishing; Environmental Research Letters; 19; 5; 4-2024; 1-14 1748-9326 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/267858 |
identifier_str_mv |
Meidan, Daphne; Li, Qinyi; Cuevas, Carlos A.; Doney, Scott C.; Fernandez, Rafael Pedro; et al.; Evaluating the potential of iron-based interventions in methane reduction and climate mitigation; IOP Publishing; Environmental Research Letters; 19; 5; 4-2024; 1-14 1748-9326 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1748-9326/ad3d72 info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-9326/ad3d72 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269915023671296 |
score |
13.13397 |