Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms

Autores
Constantinou, Maria; Gonzalo Cogno, Ximena Soledad; Elijah, Daniel H.; Kropff, Emilio; Gigg, John; Samengo, Ines; Montemurro, Marcelo A.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Burst spike patterns are common in regions of the hippocampal formation such as the subiculum and medial entorhinal cortex (MEC). Neurons in these areas are immersed in extracellular electrical potential fluctuations often recorded as the local field potential (LFP). LFP rhythms within different frequency bands are linked to different behavioral states. For example, delta rhythms are often associated with slow-wave sleep, inactivity and anesthesia; whereas theta rhythms are prominent during awake exploratory behavior and REM sleep. Recent evidence suggests that bursting neurons in the hippocampal formation can encode LFP features. We explored this hypothesis using a two-compartment model of a bursting pyramidal neuron driven by time-varying input signals containing spectral peaks at either delta or theta rhythms. The model predicted a neural code in which bursts represented the instantaneous value, phase, slope and amplitude of the driving signal both in their timing and size (spike number). To verify whether this code is employed in vivo, we examined electrophysiological recordings from the subiculum of anesthetized rats and the MEC of a behaving rat containing prevalent delta or theta rhythms, respectively. In both areas, we found bursting cells that encoded information about the instantaneous voltage, phase, slope and/or amplitude of the dominant LFP rhythm with essentially the same neural code as the simulated neurons. A fraction of the cells encoded part of the information in burst size, in agreement with model predictions. These results provide in-vivo evidence that the output of bursting neurons in the mammalian brain is tuned to features of the LFP.
Fil: Constantinou, Maria. University of Manchester; Reino Unido
Fil: Gonzalo Cogno, Ximena Soledad. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Elijah, Daniel H.. University of Manchester; Reino Unido
Fil: Kropff, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
Fil: Gigg, John. University of Manchester; Reino Unido
Fil: Samengo, Ines. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Montemurro, Marcelo A.. University of Manchester; Reino Unido
Materia
BURSTING
ENTORHINAL CORTEX
INFORMATION THEORY
LOCAL FIELD POTENTIAL
NEURAL CODING
SUBICULUM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/24795

id CONICETDig_8d6f242ce52b22db4aaf9701e0cb9e01
oai_identifier_str oai:ri.conicet.gov.ar:11336/24795
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bursting Neurons in the Hippocampal Formation Encode Features of LFP RhythmsConstantinou, MariaGonzalo Cogno, Ximena SoledadElijah, Daniel H.Kropff, EmilioGigg, JohnSamengo, InesMontemurro, Marcelo A.BURSTINGENTORHINAL CORTEXINFORMATION THEORYLOCAL FIELD POTENTIALNEURAL CODINGSUBICULUMhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Burst spike patterns are common in regions of the hippocampal formation such as the subiculum and medial entorhinal cortex (MEC). Neurons in these areas are immersed in extracellular electrical potential fluctuations often recorded as the local field potential (LFP). LFP rhythms within different frequency bands are linked to different behavioral states. For example, delta rhythms are often associated with slow-wave sleep, inactivity and anesthesia; whereas theta rhythms are prominent during awake exploratory behavior and REM sleep. Recent evidence suggests that bursting neurons in the hippocampal formation can encode LFP features. We explored this hypothesis using a two-compartment model of a bursting pyramidal neuron driven by time-varying input signals containing spectral peaks at either delta or theta rhythms. The model predicted a neural code in which bursts represented the instantaneous value, phase, slope and amplitude of the driving signal both in their timing and size (spike number). To verify whether this code is employed in vivo, we examined electrophysiological recordings from the subiculum of anesthetized rats and the MEC of a behaving rat containing prevalent delta or theta rhythms, respectively. In both areas, we found bursting cells that encoded information about the instantaneous voltage, phase, slope and/or amplitude of the dominant LFP rhythm with essentially the same neural code as the simulated neurons. A fraction of the cells encoded part of the information in burst size, in agreement with model predictions. These results provide in-vivo evidence that the output of bursting neurons in the mammalian brain is tuned to features of the LFP.Fil: Constantinou, Maria. University of Manchester; Reino UnidoFil: Gonzalo Cogno, Ximena Soledad. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Elijah, Daniel H.. University of Manchester; Reino UnidoFil: Kropff, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Gigg, John. University of Manchester; Reino UnidoFil: Samengo, Ines. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Montemurro, Marcelo A.. University of Manchester; Reino UnidoFrontiers Research Foundation2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24795Constantinou, Maria; Gonzalo Cogno, Ximena Soledad; Elijah, Daniel H.; Kropff, Emilio; Gigg, John; et al.; Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms; Frontiers Research Foundation; Frontiers in Computational Neuroscience; 10; 12-2016; 1-181662-51881662-5188CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journal.frontiersin.org/article/10.3389/fncom.2016.00133/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fncom.2016.00133info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:16Zoai:ri.conicet.gov.ar:11336/24795instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:17.218CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms
title Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms
spellingShingle Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms
Constantinou, Maria
BURSTING
ENTORHINAL CORTEX
INFORMATION THEORY
LOCAL FIELD POTENTIAL
NEURAL CODING
SUBICULUM
title_short Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms
title_full Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms
title_fullStr Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms
title_full_unstemmed Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms
title_sort Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms
dc.creator.none.fl_str_mv Constantinou, Maria
Gonzalo Cogno, Ximena Soledad
Elijah, Daniel H.
Kropff, Emilio
Gigg, John
Samengo, Ines
Montemurro, Marcelo A.
author Constantinou, Maria
author_facet Constantinou, Maria
Gonzalo Cogno, Ximena Soledad
Elijah, Daniel H.
Kropff, Emilio
Gigg, John
Samengo, Ines
Montemurro, Marcelo A.
author_role author
author2 Gonzalo Cogno, Ximena Soledad
Elijah, Daniel H.
Kropff, Emilio
Gigg, John
Samengo, Ines
Montemurro, Marcelo A.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv BURSTING
ENTORHINAL CORTEX
INFORMATION THEORY
LOCAL FIELD POTENTIAL
NEURAL CODING
SUBICULUM
topic BURSTING
ENTORHINAL CORTEX
INFORMATION THEORY
LOCAL FIELD POTENTIAL
NEURAL CODING
SUBICULUM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Burst spike patterns are common in regions of the hippocampal formation such as the subiculum and medial entorhinal cortex (MEC). Neurons in these areas are immersed in extracellular electrical potential fluctuations often recorded as the local field potential (LFP). LFP rhythms within different frequency bands are linked to different behavioral states. For example, delta rhythms are often associated with slow-wave sleep, inactivity and anesthesia; whereas theta rhythms are prominent during awake exploratory behavior and REM sleep. Recent evidence suggests that bursting neurons in the hippocampal formation can encode LFP features. We explored this hypothesis using a two-compartment model of a bursting pyramidal neuron driven by time-varying input signals containing spectral peaks at either delta or theta rhythms. The model predicted a neural code in which bursts represented the instantaneous value, phase, slope and amplitude of the driving signal both in their timing and size (spike number). To verify whether this code is employed in vivo, we examined electrophysiological recordings from the subiculum of anesthetized rats and the MEC of a behaving rat containing prevalent delta or theta rhythms, respectively. In both areas, we found bursting cells that encoded information about the instantaneous voltage, phase, slope and/or amplitude of the dominant LFP rhythm with essentially the same neural code as the simulated neurons. A fraction of the cells encoded part of the information in burst size, in agreement with model predictions. These results provide in-vivo evidence that the output of bursting neurons in the mammalian brain is tuned to features of the LFP.
Fil: Constantinou, Maria. University of Manchester; Reino Unido
Fil: Gonzalo Cogno, Ximena Soledad. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Elijah, Daniel H.. University of Manchester; Reino Unido
Fil: Kropff, Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
Fil: Gigg, John. University of Manchester; Reino Unido
Fil: Samengo, Ines. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Montemurro, Marcelo A.. University of Manchester; Reino Unido
description Burst spike patterns are common in regions of the hippocampal formation such as the subiculum and medial entorhinal cortex (MEC). Neurons in these areas are immersed in extracellular electrical potential fluctuations often recorded as the local field potential (LFP). LFP rhythms within different frequency bands are linked to different behavioral states. For example, delta rhythms are often associated with slow-wave sleep, inactivity and anesthesia; whereas theta rhythms are prominent during awake exploratory behavior and REM sleep. Recent evidence suggests that bursting neurons in the hippocampal formation can encode LFP features. We explored this hypothesis using a two-compartment model of a bursting pyramidal neuron driven by time-varying input signals containing spectral peaks at either delta or theta rhythms. The model predicted a neural code in which bursts represented the instantaneous value, phase, slope and amplitude of the driving signal both in their timing and size (spike number). To verify whether this code is employed in vivo, we examined electrophysiological recordings from the subiculum of anesthetized rats and the MEC of a behaving rat containing prevalent delta or theta rhythms, respectively. In both areas, we found bursting cells that encoded information about the instantaneous voltage, phase, slope and/or amplitude of the dominant LFP rhythm with essentially the same neural code as the simulated neurons. A fraction of the cells encoded part of the information in burst size, in agreement with model predictions. These results provide in-vivo evidence that the output of bursting neurons in the mammalian brain is tuned to features of the LFP.
publishDate 2016
dc.date.none.fl_str_mv 2016-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/24795
Constantinou, Maria; Gonzalo Cogno, Ximena Soledad; Elijah, Daniel H.; Kropff, Emilio; Gigg, John; et al.; Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms; Frontiers Research Foundation; Frontiers in Computational Neuroscience; 10; 12-2016; 1-18
1662-5188
1662-5188
CONICET Digital
CONICET
url http://hdl.handle.net/11336/24795
identifier_str_mv Constantinou, Maria; Gonzalo Cogno, Ximena Soledad; Elijah, Daniel H.; Kropff, Emilio; Gigg, John; et al.; Bursting Neurons in the Hippocampal Formation Encode Features of LFP Rhythms; Frontiers Research Foundation; Frontiers in Computational Neuroscience; 10; 12-2016; 1-18
1662-5188
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.frontiersin.org/article/10.3389/fncom.2016.00133/full
info:eu-repo/semantics/altIdentifier/doi/10.3389/fncom.2016.00133
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Research Foundation
publisher.none.fl_str_mv Frontiers Research Foundation
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614251155554304
score 13.070432