Thermal transport in a 2D stressed nanostructure with mass gradient
- Autores
- Barreto, Roberto Antonio; Carusela, María Florencia; Mancardo Viotti, Agustin Matias; Monastra, Alejandro Gabriel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Inspired by some recent molecular dynamics (MD) simulations and experiments on suspended graphene nanoribbons, we study a simplified model where the atoms are disposed in a rectangular lattice coupled by nearest neighbor interactions which are quadratic in the interatomic distance. The system has a mechanical strain, and the border atoms are coupled to Langevin thermal baths. Atom masses vary linearly in the longitudinal direction, modeling an isotope or doping distribution. This asymmetry and tension modify thermal properties. Although the atomic interaction is quadratic, the potential is anharmonic in the coordinates. By direct MD simulations and solving Fokker-Planck equations at low temperatures, we can better understand the role of anharmonicities in thermal rectification. We observe an increasing thermal current with an increasing applied mechanical tension. The temperatures and thermal currents vary along the transverse direction. This effect can be useful to establish which parts of the system are more sensitive to thermal damage. We also study thermal rectification as a function of strain and system size.
Fil: Barreto, Roberto Antonio. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carusela, María Florencia. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mancardo Viotti, Agustin Matias. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Monastra, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina - Materia
-
Thermal transport
Nanostructures - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/111528
Ver los metadatos del registro completo
id |
CONICETDig_8c9998487aaedd9f18033e431535a886 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/111528 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Thermal transport in a 2D stressed nanostructure with mass gradientBarreto, Roberto AntonioCarusela, María FlorenciaMancardo Viotti, Agustin MatiasMonastra, Alejandro GabrielThermal transportNanostructureshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Inspired by some recent molecular dynamics (MD) simulations and experiments on suspended graphene nanoribbons, we study a simplified model where the atoms are disposed in a rectangular lattice coupled by nearest neighbor interactions which are quadratic in the interatomic distance. The system has a mechanical strain, and the border atoms are coupled to Langevin thermal baths. Atom masses vary linearly in the longitudinal direction, modeling an isotope or doping distribution. This asymmetry and tension modify thermal properties. Although the atomic interaction is quadratic, the potential is anharmonic in the coordinates. By direct MD simulations and solving Fokker-Planck equations at low temperatures, we can better understand the role of anharmonicities in thermal rectification. We observe an increasing thermal current with an increasing applied mechanical tension. The temperatures and thermal currents vary along the transverse direction. This effect can be useful to establish which parts of the system are more sensitive to thermal damage. We also study thermal rectification as a function of strain and system size.Fil: Barreto, Roberto Antonio. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carusela, María Florencia. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mancardo Viotti, Agustin Matias. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Monastra, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaInstituto de Física de Líquidos y Sistemas Biológicos2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111528Barreto, Roberto Antonio; Carusela, María Florencia; Mancardo Viotti, Agustin Matias; Monastra, Alejandro Gabriel; Thermal transport in a 2D stressed nanostructure with mass gradient; Instituto de Física de Líquidos y Sistemas Biológicos; Papers in Physics; 7; 4-2015; 700081-7000891852-4249CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.papersinphysics.org/index.php/papersinphysics/article/view/226info:eu-repo/semantics/altIdentifier/doi/10.4279/pip.070008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:16:45Zoai:ri.conicet.gov.ar:11336/111528instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:16:45.695CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Thermal transport in a 2D stressed nanostructure with mass gradient |
title |
Thermal transport in a 2D stressed nanostructure with mass gradient |
spellingShingle |
Thermal transport in a 2D stressed nanostructure with mass gradient Barreto, Roberto Antonio Thermal transport Nanostructures |
title_short |
Thermal transport in a 2D stressed nanostructure with mass gradient |
title_full |
Thermal transport in a 2D stressed nanostructure with mass gradient |
title_fullStr |
Thermal transport in a 2D stressed nanostructure with mass gradient |
title_full_unstemmed |
Thermal transport in a 2D stressed nanostructure with mass gradient |
title_sort |
Thermal transport in a 2D stressed nanostructure with mass gradient |
dc.creator.none.fl_str_mv |
Barreto, Roberto Antonio Carusela, María Florencia Mancardo Viotti, Agustin Matias Monastra, Alejandro Gabriel |
author |
Barreto, Roberto Antonio |
author_facet |
Barreto, Roberto Antonio Carusela, María Florencia Mancardo Viotti, Agustin Matias Monastra, Alejandro Gabriel |
author_role |
author |
author2 |
Carusela, María Florencia Mancardo Viotti, Agustin Matias Monastra, Alejandro Gabriel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Thermal transport Nanostructures |
topic |
Thermal transport Nanostructures |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Inspired by some recent molecular dynamics (MD) simulations and experiments on suspended graphene nanoribbons, we study a simplified model where the atoms are disposed in a rectangular lattice coupled by nearest neighbor interactions which are quadratic in the interatomic distance. The system has a mechanical strain, and the border atoms are coupled to Langevin thermal baths. Atom masses vary linearly in the longitudinal direction, modeling an isotope or doping distribution. This asymmetry and tension modify thermal properties. Although the atomic interaction is quadratic, the potential is anharmonic in the coordinates. By direct MD simulations and solving Fokker-Planck equations at low temperatures, we can better understand the role of anharmonicities in thermal rectification. We observe an increasing thermal current with an increasing applied mechanical tension. The temperatures and thermal currents vary along the transverse direction. This effect can be useful to establish which parts of the system are more sensitive to thermal damage. We also study thermal rectification as a function of strain and system size. Fil: Barreto, Roberto Antonio. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Carusela, María Florencia. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Mancardo Viotti, Agustin Matias. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Monastra, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina |
description |
Inspired by some recent molecular dynamics (MD) simulations and experiments on suspended graphene nanoribbons, we study a simplified model where the atoms are disposed in a rectangular lattice coupled by nearest neighbor interactions which are quadratic in the interatomic distance. The system has a mechanical strain, and the border atoms are coupled to Langevin thermal baths. Atom masses vary linearly in the longitudinal direction, modeling an isotope or doping distribution. This asymmetry and tension modify thermal properties. Although the atomic interaction is quadratic, the potential is anharmonic in the coordinates. By direct MD simulations and solving Fokker-Planck equations at low temperatures, we can better understand the role of anharmonicities in thermal rectification. We observe an increasing thermal current with an increasing applied mechanical tension. The temperatures and thermal currents vary along the transverse direction. This effect can be useful to establish which parts of the system are more sensitive to thermal damage. We also study thermal rectification as a function of strain and system size. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/111528 Barreto, Roberto Antonio; Carusela, María Florencia; Mancardo Viotti, Agustin Matias; Monastra, Alejandro Gabriel; Thermal transport in a 2D stressed nanostructure with mass gradient; Instituto de Física de Líquidos y Sistemas Biológicos; Papers in Physics; 7; 4-2015; 700081-700089 1852-4249 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/111528 |
identifier_str_mv |
Barreto, Roberto Antonio; Carusela, María Florencia; Mancardo Viotti, Agustin Matias; Monastra, Alejandro Gabriel; Thermal transport in a 2D stressed nanostructure with mass gradient; Instituto de Física de Líquidos y Sistemas Biológicos; Papers in Physics; 7; 4-2015; 700081-700089 1852-4249 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.papersinphysics.org/index.php/papersinphysics/article/view/226 info:eu-repo/semantics/altIdentifier/doi/10.4279/pip.070008 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Instituto de Física de Líquidos y Sistemas Biológicos |
publisher.none.fl_str_mv |
Instituto de Física de Líquidos y Sistemas Biológicos |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083316407599104 |
score |
12.891075 |