Thermal transport in a 2D stressed nanostructure with mass gradient

Autores
Barreto, Roberto Antonio; Carusela, María Florencia; Mancardo Viotti, Agustin Matias; Monastra, Alejandro Gabriel
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Inspired by some recent molecular dynamics (MD) simulations and experiments on suspended graphene nanoribbons, we study a simplified model where the atoms are disposed in a rectangular lattice coupled by nearest neighbor interactions which are quadratic in the interatomic distance. The system has a mechanical strain, and the border atoms are coupled to Langevin thermal baths. Atom masses vary linearly in the longitudinal direction, modeling an isotope or doping distribution. This asymmetry and tension modify thermal properties. Although the atomic interaction is quadratic, the potential is anharmonic in the coordinates. By direct MD simulations and solving Fokker-Planck equations at low temperatures, we can better understand the role of anharmonicities in thermal rectification. We observe an increasing thermal current with an increasing applied mechanical tension. The temperatures and thermal currents vary along the transverse direction. This effect can be useful to establish which parts of the system are more sensitive to thermal damage. We also study thermal rectification as a function of strain and system size.
Fil: Barreto, Roberto Antonio. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carusela, María Florencia. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mancardo Viotti, Agustin Matias. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Monastra, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Materia
Thermal transport
Nanostructures
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/111528

id CONICETDig_8c9998487aaedd9f18033e431535a886
oai_identifier_str oai:ri.conicet.gov.ar:11336/111528
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Thermal transport in a 2D stressed nanostructure with mass gradientBarreto, Roberto AntonioCarusela, María FlorenciaMancardo Viotti, Agustin MatiasMonastra, Alejandro GabrielThermal transportNanostructureshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Inspired by some recent molecular dynamics (MD) simulations and experiments on suspended graphene nanoribbons, we study a simplified model where the atoms are disposed in a rectangular lattice coupled by nearest neighbor interactions which are quadratic in the interatomic distance. The system has a mechanical strain, and the border atoms are coupled to Langevin thermal baths. Atom masses vary linearly in the longitudinal direction, modeling an isotope or doping distribution. This asymmetry and tension modify thermal properties. Although the atomic interaction is quadratic, the potential is anharmonic in the coordinates. By direct MD simulations and solving Fokker-Planck equations at low temperatures, we can better understand the role of anharmonicities in thermal rectification. We observe an increasing thermal current with an increasing applied mechanical tension. The temperatures and thermal currents vary along the transverse direction. This effect can be useful to establish which parts of the system are more sensitive to thermal damage. We also study thermal rectification as a function of strain and system size.Fil: Barreto, Roberto Antonio. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carusela, María Florencia. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mancardo Viotti, Agustin Matias. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Monastra, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaInstituto de Física de Líquidos y Sistemas Biológicos2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111528Barreto, Roberto Antonio; Carusela, María Florencia; Mancardo Viotti, Agustin Matias; Monastra, Alejandro Gabriel; Thermal transport in a 2D stressed nanostructure with mass gradient; Instituto de Física de Líquidos y Sistemas Biológicos; Papers in Physics; 7; 4-2015; 700081-7000891852-4249CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.papersinphysics.org/index.php/papersinphysics/article/view/226info:eu-repo/semantics/altIdentifier/doi/10.4279/pip.070008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:16:45Zoai:ri.conicet.gov.ar:11336/111528instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:16:45.695CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Thermal transport in a 2D stressed nanostructure with mass gradient
title Thermal transport in a 2D stressed nanostructure with mass gradient
spellingShingle Thermal transport in a 2D stressed nanostructure with mass gradient
Barreto, Roberto Antonio
Thermal transport
Nanostructures
title_short Thermal transport in a 2D stressed nanostructure with mass gradient
title_full Thermal transport in a 2D stressed nanostructure with mass gradient
title_fullStr Thermal transport in a 2D stressed nanostructure with mass gradient
title_full_unstemmed Thermal transport in a 2D stressed nanostructure with mass gradient
title_sort Thermal transport in a 2D stressed nanostructure with mass gradient
dc.creator.none.fl_str_mv Barreto, Roberto Antonio
Carusela, María Florencia
Mancardo Viotti, Agustin Matias
Monastra, Alejandro Gabriel
author Barreto, Roberto Antonio
author_facet Barreto, Roberto Antonio
Carusela, María Florencia
Mancardo Viotti, Agustin Matias
Monastra, Alejandro Gabriel
author_role author
author2 Carusela, María Florencia
Mancardo Viotti, Agustin Matias
Monastra, Alejandro Gabriel
author2_role author
author
author
dc.subject.none.fl_str_mv Thermal transport
Nanostructures
topic Thermal transport
Nanostructures
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Inspired by some recent molecular dynamics (MD) simulations and experiments on suspended graphene nanoribbons, we study a simplified model where the atoms are disposed in a rectangular lattice coupled by nearest neighbor interactions which are quadratic in the interatomic distance. The system has a mechanical strain, and the border atoms are coupled to Langevin thermal baths. Atom masses vary linearly in the longitudinal direction, modeling an isotope or doping distribution. This asymmetry and tension modify thermal properties. Although the atomic interaction is quadratic, the potential is anharmonic in the coordinates. By direct MD simulations and solving Fokker-Planck equations at low temperatures, we can better understand the role of anharmonicities in thermal rectification. We observe an increasing thermal current with an increasing applied mechanical tension. The temperatures and thermal currents vary along the transverse direction. This effect can be useful to establish which parts of the system are more sensitive to thermal damage. We also study thermal rectification as a function of strain and system size.
Fil: Barreto, Roberto Antonio. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carusela, María Florencia. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mancardo Viotti, Agustin Matias. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Monastra, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
description Inspired by some recent molecular dynamics (MD) simulations and experiments on suspended graphene nanoribbons, we study a simplified model where the atoms are disposed in a rectangular lattice coupled by nearest neighbor interactions which are quadratic in the interatomic distance. The system has a mechanical strain, and the border atoms are coupled to Langevin thermal baths. Atom masses vary linearly in the longitudinal direction, modeling an isotope or doping distribution. This asymmetry and tension modify thermal properties. Although the atomic interaction is quadratic, the potential is anharmonic in the coordinates. By direct MD simulations and solving Fokker-Planck equations at low temperatures, we can better understand the role of anharmonicities in thermal rectification. We observe an increasing thermal current with an increasing applied mechanical tension. The temperatures and thermal currents vary along the transverse direction. This effect can be useful to establish which parts of the system are more sensitive to thermal damage. We also study thermal rectification as a function of strain and system size.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/111528
Barreto, Roberto Antonio; Carusela, María Florencia; Mancardo Viotti, Agustin Matias; Monastra, Alejandro Gabriel; Thermal transport in a 2D stressed nanostructure with mass gradient; Instituto de Física de Líquidos y Sistemas Biológicos; Papers in Physics; 7; 4-2015; 700081-700089
1852-4249
CONICET Digital
CONICET
url http://hdl.handle.net/11336/111528
identifier_str_mv Barreto, Roberto Antonio; Carusela, María Florencia; Mancardo Viotti, Agustin Matias; Monastra, Alejandro Gabriel; Thermal transport in a 2D stressed nanostructure with mass gradient; Instituto de Física de Líquidos y Sistemas Biológicos; Papers in Physics; 7; 4-2015; 700081-700089
1852-4249
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.papersinphysics.org/index.php/papersinphysics/article/view/226
info:eu-repo/semantics/altIdentifier/doi/10.4279/pip.070008
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Instituto de Física de Líquidos y Sistemas Biológicos
publisher.none.fl_str_mv Instituto de Física de Líquidos y Sistemas Biológicos
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083316407599104
score 12.891075