Coupling boundary elements to a raytracing procedure
- Autores
- Hampel, S.; Langer, S.; Cisilino, Adrian Pablo
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Typical outdoor sound propagation problems are governed by two principal phenomena: (i) diffraction in the vicinity of the noise source due to objects such as buildings or insulation barriers, and (ii) refraction at long distances from the source as a consequence of the effects of wind and temperature. The boundary element method (BEM) is well suited to account for the diffraction phenomena in the near field, while the raytracing method based on geometrical acoustics is more effective to deal with the refraction phenomena. In this paper, a new approach is presented which couples the direct BEM and a raytracing model in order to combine their advantages. Two alternative coupling procedures are developed, one is using a singular indirect BEM and the other is based on the method of fundamental solutions (MFS). The direct boundary element model is applied first for solving the near field and computing the sound pressure along an auxiliary interface which limits the near field extent. Then, a singular indirect BEM or MFS is used to find the intensities of a number of point sources which produce the same sound pressure on the interface to that resulting from the near-field analysis. Finally, the point sources are the input data for the raytracing model of the far field. A 3D implementation of the proposed method is finally applied to an outdoor sound propagation problem.
Fil: Hampel, S.. Technical University Braunschweig; Alemania
Fil: Langer, S.. Technical University Clausthal; Alemania
Fil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina - Materia
-
Acoustics
Bem
Coupling
Hybrid Method
Outdoor Sound Propagation
Raytracing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/78720
Ver los metadatos del registro completo
id |
CONICETDig_8c046eaa409c3a03e707204073023563 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/78720 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Coupling boundary elements to a raytracing procedureHampel, S.Langer, S.Cisilino, Adrian PabloAcousticsBemCouplingHybrid MethodOutdoor Sound PropagationRaytracinghttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2Typical outdoor sound propagation problems are governed by two principal phenomena: (i) diffraction in the vicinity of the noise source due to objects such as buildings or insulation barriers, and (ii) refraction at long distances from the source as a consequence of the effects of wind and temperature. The boundary element method (BEM) is well suited to account for the diffraction phenomena in the near field, while the raytracing method based on geometrical acoustics is more effective to deal with the refraction phenomena. In this paper, a new approach is presented which couples the direct BEM and a raytracing model in order to combine their advantages. Two alternative coupling procedures are developed, one is using a singular indirect BEM and the other is based on the method of fundamental solutions (MFS). The direct boundary element model is applied first for solving the near field and computing the sound pressure along an auxiliary interface which limits the near field extent. Then, a singular indirect BEM or MFS is used to find the intensities of a number of point sources which produce the same sound pressure on the interface to that resulting from the near-field analysis. Finally, the point sources are the input data for the raytracing model of the far field. A 3D implementation of the proposed method is finally applied to an outdoor sound propagation problem.Fil: Hampel, S.. Technical University Braunschweig; AlemaniaFil: Langer, S.. Technical University Clausthal; AlemaniaFil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaJohn Wiley & Sons Ltd2008-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/78720Hampel, S.; Langer, S.; Cisilino, Adrian Pablo; Coupling boundary elements to a raytracing procedure; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 73; 3; 1-2008; 427-4450029-5981CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2080info:eu-repo/semantics/altIdentifier/doi/10.1002/nme.2080info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:39:41Zoai:ri.conicet.gov.ar:11336/78720instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:39:41.896CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Coupling boundary elements to a raytracing procedure |
title |
Coupling boundary elements to a raytracing procedure |
spellingShingle |
Coupling boundary elements to a raytracing procedure Hampel, S. Acoustics Bem Coupling Hybrid Method Outdoor Sound Propagation Raytracing |
title_short |
Coupling boundary elements to a raytracing procedure |
title_full |
Coupling boundary elements to a raytracing procedure |
title_fullStr |
Coupling boundary elements to a raytracing procedure |
title_full_unstemmed |
Coupling boundary elements to a raytracing procedure |
title_sort |
Coupling boundary elements to a raytracing procedure |
dc.creator.none.fl_str_mv |
Hampel, S. Langer, S. Cisilino, Adrian Pablo |
author |
Hampel, S. |
author_facet |
Hampel, S. Langer, S. Cisilino, Adrian Pablo |
author_role |
author |
author2 |
Langer, S. Cisilino, Adrian Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Acoustics Bem Coupling Hybrid Method Outdoor Sound Propagation Raytracing |
topic |
Acoustics Bem Coupling Hybrid Method Outdoor Sound Propagation Raytracing |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.1 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Typical outdoor sound propagation problems are governed by two principal phenomena: (i) diffraction in the vicinity of the noise source due to objects such as buildings or insulation barriers, and (ii) refraction at long distances from the source as a consequence of the effects of wind and temperature. The boundary element method (BEM) is well suited to account for the diffraction phenomena in the near field, while the raytracing method based on geometrical acoustics is more effective to deal with the refraction phenomena. In this paper, a new approach is presented which couples the direct BEM and a raytracing model in order to combine their advantages. Two alternative coupling procedures are developed, one is using a singular indirect BEM and the other is based on the method of fundamental solutions (MFS). The direct boundary element model is applied first for solving the near field and computing the sound pressure along an auxiliary interface which limits the near field extent. Then, a singular indirect BEM or MFS is used to find the intensities of a number of point sources which produce the same sound pressure on the interface to that resulting from the near-field analysis. Finally, the point sources are the input data for the raytracing model of the far field. A 3D implementation of the proposed method is finally applied to an outdoor sound propagation problem. Fil: Hampel, S.. Technical University Braunschweig; Alemania Fil: Langer, S.. Technical University Clausthal; Alemania Fil: Cisilino, Adrian Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina |
description |
Typical outdoor sound propagation problems are governed by two principal phenomena: (i) diffraction in the vicinity of the noise source due to objects such as buildings or insulation barriers, and (ii) refraction at long distances from the source as a consequence of the effects of wind and temperature. The boundary element method (BEM) is well suited to account for the diffraction phenomena in the near field, while the raytracing method based on geometrical acoustics is more effective to deal with the refraction phenomena. In this paper, a new approach is presented which couples the direct BEM and a raytracing model in order to combine their advantages. Two alternative coupling procedures are developed, one is using a singular indirect BEM and the other is based on the method of fundamental solutions (MFS). The direct boundary element model is applied first for solving the near field and computing the sound pressure along an auxiliary interface which limits the near field extent. Then, a singular indirect BEM or MFS is used to find the intensities of a number of point sources which produce the same sound pressure on the interface to that resulting from the near-field analysis. Finally, the point sources are the input data for the raytracing model of the far field. A 3D implementation of the proposed method is finally applied to an outdoor sound propagation problem. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/78720 Hampel, S.; Langer, S.; Cisilino, Adrian Pablo; Coupling boundary elements to a raytracing procedure; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 73; 3; 1-2008; 427-445 0029-5981 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/78720 |
identifier_str_mv |
Hampel, S.; Langer, S.; Cisilino, Adrian Pablo; Coupling boundary elements to a raytracing procedure; John Wiley & Sons Ltd; International Journal for Numerical Methods in Engineering; 73; 3; 1-2008; 427-445 0029-5981 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.2080 info:eu-repo/semantics/altIdentifier/doi/10.1002/nme.2080 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082884046159872 |
score |
13.22299 |