Improved Poincaré inequalities and solutions of the divergence in weighted norms
- Autores
- Acosta Rodriguez, Gabriel; Cejas, María Eugenia; Duran, Ricardo Guillermo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The improved Poincaré inequality ||φ-φΩ||Lp(Ω)≤C||d∇φ||Lp(Ω) Where Ω ⊂ Rn is a bounded domain and d(x) is the distance from x to the boundary of Ω, has many applications. In particular, it can be used to obtain a decomposition of functions with vanishing integral into a sum of locally supported functions with the same property. Consequently, it can be used to go from local to global results, i.e., to extend to very general bounded domains results which are known for cubes. For example, this methodology can be used to prove the existence of solutions of the divergence in Sobolev spaces. The goal of this paper is to analyze the generalization of these results to the case of weighted norms. When the weight is in Ap the arguments used in the un-weighted case can be extended without great difficulty. However, we will show that the improved Poincaré inequality, as well as its above mentioned applications, can be extended to a more general class of weights.
Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Cejas, María Eugenia. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina - Materia
-
DIVERGENCE OPERATOR
POINCARÉ INEQUALITIES
WEIGHTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55465
Ver los metadatos del registro completo
id |
CONICETDig_20339a6deca55355b24d95624935fc76 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55465 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Improved Poincaré inequalities and solutions of the divergence in weighted normsAcosta Rodriguez, GabrielCejas, María EugeniaDuran, Ricardo GuillermoDIVERGENCE OPERATORPOINCARÉ INEQUALITIESWEIGHTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The improved Poincaré inequality ||φ-φΩ||Lp(Ω)≤C||d∇φ||Lp(Ω) Where Ω ⊂ Rn is a bounded domain and d(x) is the distance from x to the boundary of Ω, has many applications. In particular, it can be used to obtain a decomposition of functions with vanishing integral into a sum of locally supported functions with the same property. Consequently, it can be used to go from local to global results, i.e., to extend to very general bounded domains results which are known for cubes. For example, this methodology can be used to prove the existence of solutions of the divergence in Sobolev spaces. The goal of this paper is to analyze the generalization of these results to the case of weighted norms. When the weight is in Ap the arguments used in the un-weighted case can be extended without great difficulty. However, we will show that the improved Poincaré inequality, as well as its above mentioned applications, can be extended to a more general class of weights.Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Cejas, María Eugenia. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaSuomalainen Tiedeakatemia2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55465Acosta Rodriguez, Gabriel; Cejas, María Eugenia; Duran, Ricardo Guillermo; Improved Poincaré inequalities and solutions of the divergence in weighted norms; Suomalainen Tiedeakatemia; Annales Academiae Scientiarum Fennicae. Mathematica; 42; 2-2017; 211-2261239-629X1798-2383CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5186/aasfm.2017.4212info:eu-repo/semantics/altIdentifier/url/http://www.acadsci.fi/mathematica/Vol42/AcostaCejasDuran.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:53:02Zoai:ri.conicet.gov.ar:11336/55465instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:53:03.137CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Improved Poincaré inequalities and solutions of the divergence in weighted norms |
title |
Improved Poincaré inequalities and solutions of the divergence in weighted norms |
spellingShingle |
Improved Poincaré inequalities and solutions of the divergence in weighted norms Acosta Rodriguez, Gabriel DIVERGENCE OPERATOR POINCARÉ INEQUALITIES WEIGHTS |
title_short |
Improved Poincaré inequalities and solutions of the divergence in weighted norms |
title_full |
Improved Poincaré inequalities and solutions of the divergence in weighted norms |
title_fullStr |
Improved Poincaré inequalities and solutions of the divergence in weighted norms |
title_full_unstemmed |
Improved Poincaré inequalities and solutions of the divergence in weighted norms |
title_sort |
Improved Poincaré inequalities and solutions of the divergence in weighted norms |
dc.creator.none.fl_str_mv |
Acosta Rodriguez, Gabriel Cejas, María Eugenia Duran, Ricardo Guillermo |
author |
Acosta Rodriguez, Gabriel |
author_facet |
Acosta Rodriguez, Gabriel Cejas, María Eugenia Duran, Ricardo Guillermo |
author_role |
author |
author2 |
Cejas, María Eugenia Duran, Ricardo Guillermo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DIVERGENCE OPERATOR POINCARÉ INEQUALITIES WEIGHTS |
topic |
DIVERGENCE OPERATOR POINCARÉ INEQUALITIES WEIGHTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The improved Poincaré inequality ||φ-φΩ||Lp(Ω)≤C||d∇φ||Lp(Ω) Where Ω ⊂ Rn is a bounded domain and d(x) is the distance from x to the boundary of Ω, has many applications. In particular, it can be used to obtain a decomposition of functions with vanishing integral into a sum of locally supported functions with the same property. Consequently, it can be used to go from local to global results, i.e., to extend to very general bounded domains results which are known for cubes. For example, this methodology can be used to prove the existence of solutions of the divergence in Sobolev spaces. The goal of this paper is to analyze the generalization of these results to the case of weighted norms. When the weight is in Ap the arguments used in the un-weighted case can be extended without great difficulty. However, we will show that the improved Poincaré inequality, as well as its above mentioned applications, can be extended to a more general class of weights. Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Cejas, María Eugenia. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina |
description |
The improved Poincaré inequality ||φ-φΩ||Lp(Ω)≤C||d∇φ||Lp(Ω) Where Ω ⊂ Rn is a bounded domain and d(x) is the distance from x to the boundary of Ω, has many applications. In particular, it can be used to obtain a decomposition of functions with vanishing integral into a sum of locally supported functions with the same property. Consequently, it can be used to go from local to global results, i.e., to extend to very general bounded domains results which are known for cubes. For example, this methodology can be used to prove the existence of solutions of the divergence in Sobolev spaces. The goal of this paper is to analyze the generalization of these results to the case of weighted norms. When the weight is in Ap the arguments used in the un-weighted case can be extended without great difficulty. However, we will show that the improved Poincaré inequality, as well as its above mentioned applications, can be extended to a more general class of weights. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55465 Acosta Rodriguez, Gabriel; Cejas, María Eugenia; Duran, Ricardo Guillermo; Improved Poincaré inequalities and solutions of the divergence in weighted norms; Suomalainen Tiedeakatemia; Annales Academiae Scientiarum Fennicae. Mathematica; 42; 2-2017; 211-226 1239-629X 1798-2383 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55465 |
identifier_str_mv |
Acosta Rodriguez, Gabriel; Cejas, María Eugenia; Duran, Ricardo Guillermo; Improved Poincaré inequalities and solutions of the divergence in weighted norms; Suomalainen Tiedeakatemia; Annales Academiae Scientiarum Fennicae. Mathematica; 42; 2-2017; 211-226 1239-629X 1798-2383 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.5186/aasfm.2017.4212 info:eu-repo/semantics/altIdentifier/url/http://www.acadsci.fi/mathematica/Vol42/AcostaCejasDuran.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Suomalainen Tiedeakatemia |
publisher.none.fl_str_mv |
Suomalainen Tiedeakatemia |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606875013120000 |
score |
13.001348 |