Improved Poincaré inequalities and solutions of the divergence in weighted norms

Autores
Acosta Rodriguez, Gabriel; Cejas, María Eugenia; Duran, Ricardo Guillermo
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The improved Poincaré inequality ||φ-φΩ||Lp(Ω)≤C||d∇φ||Lp(Ω) Where Ω ⊂ Rn is a bounded domain and d(x) is the distance from x to the boundary of Ω, has many applications. In particular, it can be used to obtain a decomposition of functions with vanishing integral into a sum of locally supported functions with the same property. Consequently, it can be used to go from local to global results, i.e., to extend to very general bounded domains results which are known for cubes. For example, this methodology can be used to prove the existence of solutions of the divergence in Sobolev spaces. The goal of this paper is to analyze the generalization of these results to the case of weighted norms. When the weight is in Ap the arguments used in the un-weighted case can be extended without great difficulty. However, we will show that the improved Poincaré inequality, as well as its above mentioned applications, can be extended to a more general class of weights.
Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Cejas, María Eugenia. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Materia
DIVERGENCE OPERATOR
POINCARÉ INEQUALITIES
WEIGHTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55465

id CONICETDig_20339a6deca55355b24d95624935fc76
oai_identifier_str oai:ri.conicet.gov.ar:11336/55465
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Improved Poincaré inequalities and solutions of the divergence in weighted normsAcosta Rodriguez, GabrielCejas, María EugeniaDuran, Ricardo GuillermoDIVERGENCE OPERATORPOINCARÉ INEQUALITIESWEIGHTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The improved Poincaré inequality ||φ-φΩ||Lp(Ω)≤C||d∇φ||Lp(Ω) Where Ω ⊂ Rn is a bounded domain and d(x) is the distance from x to the boundary of Ω, has many applications. In particular, it can be used to obtain a decomposition of functions with vanishing integral into a sum of locally supported functions with the same property. Consequently, it can be used to go from local to global results, i.e., to extend to very general bounded domains results which are known for cubes. For example, this methodology can be used to prove the existence of solutions of the divergence in Sobolev spaces. The goal of this paper is to analyze the generalization of these results to the case of weighted norms. When the weight is in Ap the arguments used in the un-weighted case can be extended without great difficulty. However, we will show that the improved Poincaré inequality, as well as its above mentioned applications, can be extended to a more general class of weights.Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Cejas, María Eugenia. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaSuomalainen Tiedeakatemia2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55465Acosta Rodriguez, Gabriel; Cejas, María Eugenia; Duran, Ricardo Guillermo; Improved Poincaré inequalities and solutions of the divergence in weighted norms; Suomalainen Tiedeakatemia; Annales Academiae Scientiarum Fennicae. Mathematica; 42; 2-2017; 211-2261239-629X1798-2383CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5186/aasfm.2017.4212info:eu-repo/semantics/altIdentifier/url/http://www.acadsci.fi/mathematica/Vol42/AcostaCejasDuran.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:53:02Zoai:ri.conicet.gov.ar:11336/55465instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:53:03.137CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Improved Poincaré inequalities and solutions of the divergence in weighted norms
title Improved Poincaré inequalities and solutions of the divergence in weighted norms
spellingShingle Improved Poincaré inequalities and solutions of the divergence in weighted norms
Acosta Rodriguez, Gabriel
DIVERGENCE OPERATOR
POINCARÉ INEQUALITIES
WEIGHTS
title_short Improved Poincaré inequalities and solutions of the divergence in weighted norms
title_full Improved Poincaré inequalities and solutions of the divergence in weighted norms
title_fullStr Improved Poincaré inequalities and solutions of the divergence in weighted norms
title_full_unstemmed Improved Poincaré inequalities and solutions of the divergence in weighted norms
title_sort Improved Poincaré inequalities and solutions of the divergence in weighted norms
dc.creator.none.fl_str_mv Acosta Rodriguez, Gabriel
Cejas, María Eugenia
Duran, Ricardo Guillermo
author Acosta Rodriguez, Gabriel
author_facet Acosta Rodriguez, Gabriel
Cejas, María Eugenia
Duran, Ricardo Guillermo
author_role author
author2 Cejas, María Eugenia
Duran, Ricardo Guillermo
author2_role author
author
dc.subject.none.fl_str_mv DIVERGENCE OPERATOR
POINCARÉ INEQUALITIES
WEIGHTS
topic DIVERGENCE OPERATOR
POINCARÉ INEQUALITIES
WEIGHTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The improved Poincaré inequality ||φ-φΩ||Lp(Ω)≤C||d∇φ||Lp(Ω) Where Ω ⊂ Rn is a bounded domain and d(x) is the distance from x to the boundary of Ω, has many applications. In particular, it can be used to obtain a decomposition of functions with vanishing integral into a sum of locally supported functions with the same property. Consequently, it can be used to go from local to global results, i.e., to extend to very general bounded domains results which are known for cubes. For example, this methodology can be used to prove the existence of solutions of the divergence in Sobolev spaces. The goal of this paper is to analyze the generalization of these results to the case of weighted norms. When the weight is in Ap the arguments used in the un-weighted case can be extended without great difficulty. However, we will show that the improved Poincaré inequality, as well as its above mentioned applications, can be extended to a more general class of weights.
Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Cejas, María Eugenia. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
description The improved Poincaré inequality ||φ-φΩ||Lp(Ω)≤C||d∇φ||Lp(Ω) Where Ω ⊂ Rn is a bounded domain and d(x) is the distance from x to the boundary of Ω, has many applications. In particular, it can be used to obtain a decomposition of functions with vanishing integral into a sum of locally supported functions with the same property. Consequently, it can be used to go from local to global results, i.e., to extend to very general bounded domains results which are known for cubes. For example, this methodology can be used to prove the existence of solutions of the divergence in Sobolev spaces. The goal of this paper is to analyze the generalization of these results to the case of weighted norms. When the weight is in Ap the arguments used in the un-weighted case can be extended without great difficulty. However, we will show that the improved Poincaré inequality, as well as its above mentioned applications, can be extended to a more general class of weights.
publishDate 2017
dc.date.none.fl_str_mv 2017-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55465
Acosta Rodriguez, Gabriel; Cejas, María Eugenia; Duran, Ricardo Guillermo; Improved Poincaré inequalities and solutions of the divergence in weighted norms; Suomalainen Tiedeakatemia; Annales Academiae Scientiarum Fennicae. Mathematica; 42; 2-2017; 211-226
1239-629X
1798-2383
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55465
identifier_str_mv Acosta Rodriguez, Gabriel; Cejas, María Eugenia; Duran, Ricardo Guillermo; Improved Poincaré inequalities and solutions of the divergence in weighted norms; Suomalainen Tiedeakatemia; Annales Academiae Scientiarum Fennicae. Mathematica; 42; 2-2017; 211-226
1239-629X
1798-2383
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.5186/aasfm.2017.4212
info:eu-repo/semantics/altIdentifier/url/http://www.acadsci.fi/mathematica/Vol42/AcostaCejasDuran.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Suomalainen Tiedeakatemia
publisher.none.fl_str_mv Suomalainen Tiedeakatemia
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606875013120000
score 13.001348