Comparative evaluation of data-based estimators for wave-induced force in wave energy converters
- Autores
- Saavedra, Marcos David; Faedo, Nicolás Ezequiel; Inthamoussou, Fernando Ariel; Mosquera, Facundo; Garelli, Fabricio
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Wave energy conversion technology emerges as a promising approach to renewable energy generation, offering a consistent and predictable power source that complements intermittent renewable energy sources such as solar and wind power. Achieving optimal ocean wave energy absorption requires precise knowledge of the so-called wave excitation force, which is typically estimated through model-based techniques reliant on accurate system descriptions. However, uncertainties inherent to hydrodynamic modelling often limit the reliability of these approaches. To address this challenge, this paper presents a comprehensive evaluation of model-free data-based estimators, for wave excitation torque estimation in Wavestar like wave energy converters (WECs). The study examines various neural network architectures, including static models (feedforward networks) and those incorporating temporal dynamics (recurrent neural networks and long short-term memory networks). The analysis examines the impact of utilising multiple input combinations, ranging from motion variables to configurations enhanced with surrounding wave height measurements from the device’s vicinity. Input selection is guided by correlation analysis and spectral coherence evaluation to ensure physical relevance and practical feasibility. Estimators are trained and tested using experimental data obtained from a comprehensive wave tank campaign emulating diverse sea state conditions. The results demonstrate that architectures incorporating temporal considerations achieve superior performance, particularly under wide-banded sea states. A comparative analysis with a model-based estimator, implemented via a Kalman–Bucy Filter with a harmonic oscillator expansion, highlights the advantages of neural networks, especially under challenging conditions where model-based approaches face significant limitations. These findings underscore the capability of data-based strategies to reduce dependence on potentially complex and uncertain analytical models, offering a promising alternative for improving WEC control systems.
Fil: Saavedra, Marcos David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
Fil: Faedo, Nicolás Ezequiel. Politecnico di Torino; Italia
Fil: Inthamoussou, Fernando Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
Fil: Mosquera, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
Fil: Garelli, Fabricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina - Materia
-
Wave energy converters
Wave excitation force
Data-based estimation
Artificial neural networks - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/275675
Ver los metadatos del registro completo
| id |
CONICETDig_8bb7887de77b3bec7cb16513ed38e395 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/275675 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Comparative evaluation of data-based estimators for wave-induced force in wave energy convertersSaavedra, Marcos DavidFaedo, Nicolás EzequielInthamoussou, Fernando ArielMosquera, FacundoGarelli, FabricioWave energy convertersWave excitation forceData-based estimationArtificial neural networkshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Wave energy conversion technology emerges as a promising approach to renewable energy generation, offering a consistent and predictable power source that complements intermittent renewable energy sources such as solar and wind power. Achieving optimal ocean wave energy absorption requires precise knowledge of the so-called wave excitation force, which is typically estimated through model-based techniques reliant on accurate system descriptions. However, uncertainties inherent to hydrodynamic modelling often limit the reliability of these approaches. To address this challenge, this paper presents a comprehensive evaluation of model-free data-based estimators, for wave excitation torque estimation in Wavestar like wave energy converters (WECs). The study examines various neural network architectures, including static models (feedforward networks) and those incorporating temporal dynamics (recurrent neural networks and long short-term memory networks). The analysis examines the impact of utilising multiple input combinations, ranging from motion variables to configurations enhanced with surrounding wave height measurements from the device’s vicinity. Input selection is guided by correlation analysis and spectral coherence evaluation to ensure physical relevance and practical feasibility. Estimators are trained and tested using experimental data obtained from a comprehensive wave tank campaign emulating diverse sea state conditions. The results demonstrate that architectures incorporating temporal considerations achieve superior performance, particularly under wide-banded sea states. A comparative analysis with a model-based estimator, implemented via a Kalman–Bucy Filter with a harmonic oscillator expansion, highlights the advantages of neural networks, especially under challenging conditions where model-based approaches face significant limitations. These findings underscore the capability of data-based strategies to reduce dependence on potentially complex and uncertain analytical models, offering a promising alternative for improving WEC control systems.Fil: Saavedra, Marcos David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Faedo, Nicolás Ezequiel. Politecnico di Torino; ItaliaFil: Inthamoussou, Fernando Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Mosquera, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Garelli, Fabricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaSpringer2025-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275675Saavedra, Marcos David; Faedo, Nicolás Ezequiel; Inthamoussou, Fernando Ariel; Mosquera, Facundo; Garelli, Fabricio; Comparative evaluation of data-based estimators for wave-induced force in wave energy converters; Springer; Journal of Ocean Engineering and Marine Energy; 9-2025; 1-142198-6452CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s40722-025-00427-4info:eu-repo/semantics/altIdentifier/doi/10.1007/s40722-025-00427-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-03T09:24:40Zoai:ri.conicet.gov.ar:11336/275675instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-03 09:24:41.079CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Comparative evaluation of data-based estimators for wave-induced force in wave energy converters |
| title |
Comparative evaluation of data-based estimators for wave-induced force in wave energy converters |
| spellingShingle |
Comparative evaluation of data-based estimators for wave-induced force in wave energy converters Saavedra, Marcos David Wave energy converters Wave excitation force Data-based estimation Artificial neural networks |
| title_short |
Comparative evaluation of data-based estimators for wave-induced force in wave energy converters |
| title_full |
Comparative evaluation of data-based estimators for wave-induced force in wave energy converters |
| title_fullStr |
Comparative evaluation of data-based estimators for wave-induced force in wave energy converters |
| title_full_unstemmed |
Comparative evaluation of data-based estimators for wave-induced force in wave energy converters |
| title_sort |
Comparative evaluation of data-based estimators for wave-induced force in wave energy converters |
| dc.creator.none.fl_str_mv |
Saavedra, Marcos David Faedo, Nicolás Ezequiel Inthamoussou, Fernando Ariel Mosquera, Facundo Garelli, Fabricio |
| author |
Saavedra, Marcos David |
| author_facet |
Saavedra, Marcos David Faedo, Nicolás Ezequiel Inthamoussou, Fernando Ariel Mosquera, Facundo Garelli, Fabricio |
| author_role |
author |
| author2 |
Faedo, Nicolás Ezequiel Inthamoussou, Fernando Ariel Mosquera, Facundo Garelli, Fabricio |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
Wave energy converters Wave excitation force Data-based estimation Artificial neural networks |
| topic |
Wave energy converters Wave excitation force Data-based estimation Artificial neural networks |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Wave energy conversion technology emerges as a promising approach to renewable energy generation, offering a consistent and predictable power source that complements intermittent renewable energy sources such as solar and wind power. Achieving optimal ocean wave energy absorption requires precise knowledge of the so-called wave excitation force, which is typically estimated through model-based techniques reliant on accurate system descriptions. However, uncertainties inherent to hydrodynamic modelling often limit the reliability of these approaches. To address this challenge, this paper presents a comprehensive evaluation of model-free data-based estimators, for wave excitation torque estimation in Wavestar like wave energy converters (WECs). The study examines various neural network architectures, including static models (feedforward networks) and those incorporating temporal dynamics (recurrent neural networks and long short-term memory networks). The analysis examines the impact of utilising multiple input combinations, ranging from motion variables to configurations enhanced with surrounding wave height measurements from the device’s vicinity. Input selection is guided by correlation analysis and spectral coherence evaluation to ensure physical relevance and practical feasibility. Estimators are trained and tested using experimental data obtained from a comprehensive wave tank campaign emulating diverse sea state conditions. The results demonstrate that architectures incorporating temporal considerations achieve superior performance, particularly under wide-banded sea states. A comparative analysis with a model-based estimator, implemented via a Kalman–Bucy Filter with a harmonic oscillator expansion, highlights the advantages of neural networks, especially under challenging conditions where model-based approaches face significant limitations. These findings underscore the capability of data-based strategies to reduce dependence on potentially complex and uncertain analytical models, offering a promising alternative for improving WEC control systems. Fil: Saavedra, Marcos David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina Fil: Faedo, Nicolás Ezequiel. Politecnico di Torino; Italia Fil: Inthamoussou, Fernando Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina Fil: Mosquera, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina Fil: Garelli, Fabricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina |
| description |
Wave energy conversion technology emerges as a promising approach to renewable energy generation, offering a consistent and predictable power source that complements intermittent renewable energy sources such as solar and wind power. Achieving optimal ocean wave energy absorption requires precise knowledge of the so-called wave excitation force, which is typically estimated through model-based techniques reliant on accurate system descriptions. However, uncertainties inherent to hydrodynamic modelling often limit the reliability of these approaches. To address this challenge, this paper presents a comprehensive evaluation of model-free data-based estimators, for wave excitation torque estimation in Wavestar like wave energy converters (WECs). The study examines various neural network architectures, including static models (feedforward networks) and those incorporating temporal dynamics (recurrent neural networks and long short-term memory networks). The analysis examines the impact of utilising multiple input combinations, ranging from motion variables to configurations enhanced with surrounding wave height measurements from the device’s vicinity. Input selection is guided by correlation analysis and spectral coherence evaluation to ensure physical relevance and practical feasibility. Estimators are trained and tested using experimental data obtained from a comprehensive wave tank campaign emulating diverse sea state conditions. The results demonstrate that architectures incorporating temporal considerations achieve superior performance, particularly under wide-banded sea states. A comparative analysis with a model-based estimator, implemented via a Kalman–Bucy Filter with a harmonic oscillator expansion, highlights the advantages of neural networks, especially under challenging conditions where model-based approaches face significant limitations. These findings underscore the capability of data-based strategies to reduce dependence on potentially complex and uncertain analytical models, offering a promising alternative for improving WEC control systems. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/275675 Saavedra, Marcos David; Faedo, Nicolás Ezequiel; Inthamoussou, Fernando Ariel; Mosquera, Facundo; Garelli, Fabricio; Comparative evaluation of data-based estimators for wave-induced force in wave energy converters; Springer; Journal of Ocean Engineering and Marine Energy; 9-2025; 1-14 2198-6452 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/275675 |
| identifier_str_mv |
Saavedra, Marcos David; Faedo, Nicolás Ezequiel; Inthamoussou, Fernando Ariel; Mosquera, Facundo; Garelli, Fabricio; Comparative evaluation of data-based estimators for wave-induced force in wave energy converters; Springer; Journal of Ocean Engineering and Marine Energy; 9-2025; 1-14 2198-6452 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s40722-025-00427-4 info:eu-repo/semantics/altIdentifier/doi/10.1007/s40722-025-00427-4 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1850505582934491136 |
| score |
13.214268 |