Photoexcitation dynamics in perylene diimide dimers

Autores
Mukazhanova, Aliya; Malone, Walter; Negrín Yuvero, Lázaro Hassiel; Fernández Alberti, Sebastián; Tretiak, Sergei; Sharifzadeh, Sahar
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We utilize first-principles theory to investigate photo-induced excited-state dynamics of functionalized perylene diimide. This class of materials is highly suitable for solar energy conversion because of the strong optical absorbance, efficient energy transfer, and chemical tunability. We couple time-dependent density functional theory to a recently developed time-resolved non-adiabatic dynamics approach based on a semi-empirical description. By studying the monomer and dimer, we focus on the role stacking plays on the time-scales associated with excited-state non-radiative relaxation from a high excitonic state to the lowest energy exciton. We predict that the time-scale for energy conversion in the dimer is significantly faster than that in the monomer when equivalent excited states are accounted for. Additionally, for the dimer, the decay from the second to the nearly degenerate lowest energy excited-state involves two time-scales: a rapid decay on the order of ∼10 fs followed by a slower decay of ∼100 fs. Analysis of the spatial localization of the electronic transition density during the internal conversion process points out the existence of localized states on individual monomers, indicating that the strength of thermal fluctuations exceeds electronic couplings between the states such that the exciton hops between localized states throughout the simulation.
Fil: Mukazhanova, Aliya. Boston University; Estados Unidos
Fil: Malone, Walter. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Negrín Yuvero, Lázaro Hassiel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tretiak, Sergei. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Sharifzadeh, Sahar. Boston University; Estados Unidos
Materia
Photoexcitation
Dynamics
Perylene
Non-radiative
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/172573

id CONICETDig_8b9860b7eef34228fc730247884e2183
oai_identifier_str oai:ri.conicet.gov.ar:11336/172573
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Photoexcitation dynamics in perylene diimide dimersMukazhanova, AliyaMalone, WalterNegrín Yuvero, Lázaro HassielFernández Alberti, SebastiánTretiak, SergeiSharifzadeh, SaharPhotoexcitationDynamicsPeryleneNon-radiativehttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We utilize first-principles theory to investigate photo-induced excited-state dynamics of functionalized perylene diimide. This class of materials is highly suitable for solar energy conversion because of the strong optical absorbance, efficient energy transfer, and chemical tunability. We couple time-dependent density functional theory to a recently developed time-resolved non-adiabatic dynamics approach based on a semi-empirical description. By studying the monomer and dimer, we focus on the role stacking plays on the time-scales associated with excited-state non-radiative relaxation from a high excitonic state to the lowest energy exciton. We predict that the time-scale for energy conversion in the dimer is significantly faster than that in the monomer when equivalent excited states are accounted for. Additionally, for the dimer, the decay from the second to the nearly degenerate lowest energy excited-state involves two time-scales: a rapid decay on the order of ∼10 fs followed by a slower decay of ∼100 fs. Analysis of the spatial localization of the electronic transition density during the internal conversion process points out the existence of localized states on individual monomers, indicating that the strength of thermal fluctuations exceeds electronic couplings between the states such that the exciton hops between localized states throughout the simulation.Fil: Mukazhanova, Aliya. Boston University; Estados UnidosFil: Malone, Walter. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Negrín Yuvero, Lázaro Hassiel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tretiak, Sergei. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Sharifzadeh, Sahar. Boston University; Estados UnidosAmerican Institute of Physics2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172573Mukazhanova, Aliya; Malone, Walter; Negrín Yuvero, Lázaro Hassiel; Fernández Alberti, Sebastián; Tretiak, Sergei; et al.; Photoexcitation dynamics in perylene diimide dimers; American Institute of Physics; Journal of Chemical Physics; 153; 24; 12-2020; 1-80021-96061089-7690CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/5.0031485info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0031485info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:38Zoai:ri.conicet.gov.ar:11336/172573instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:38.361CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Photoexcitation dynamics in perylene diimide dimers
title Photoexcitation dynamics in perylene diimide dimers
spellingShingle Photoexcitation dynamics in perylene diimide dimers
Mukazhanova, Aliya
Photoexcitation
Dynamics
Perylene
Non-radiative
title_short Photoexcitation dynamics in perylene diimide dimers
title_full Photoexcitation dynamics in perylene diimide dimers
title_fullStr Photoexcitation dynamics in perylene diimide dimers
title_full_unstemmed Photoexcitation dynamics in perylene diimide dimers
title_sort Photoexcitation dynamics in perylene diimide dimers
dc.creator.none.fl_str_mv Mukazhanova, Aliya
Malone, Walter
Negrín Yuvero, Lázaro Hassiel
Fernández Alberti, Sebastián
Tretiak, Sergei
Sharifzadeh, Sahar
author Mukazhanova, Aliya
author_facet Mukazhanova, Aliya
Malone, Walter
Negrín Yuvero, Lázaro Hassiel
Fernández Alberti, Sebastián
Tretiak, Sergei
Sharifzadeh, Sahar
author_role author
author2 Malone, Walter
Negrín Yuvero, Lázaro Hassiel
Fernández Alberti, Sebastián
Tretiak, Sergei
Sharifzadeh, Sahar
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Photoexcitation
Dynamics
Perylene
Non-radiative
topic Photoexcitation
Dynamics
Perylene
Non-radiative
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We utilize first-principles theory to investigate photo-induced excited-state dynamics of functionalized perylene diimide. This class of materials is highly suitable for solar energy conversion because of the strong optical absorbance, efficient energy transfer, and chemical tunability. We couple time-dependent density functional theory to a recently developed time-resolved non-adiabatic dynamics approach based on a semi-empirical description. By studying the monomer and dimer, we focus on the role stacking plays on the time-scales associated with excited-state non-radiative relaxation from a high excitonic state to the lowest energy exciton. We predict that the time-scale for energy conversion in the dimer is significantly faster than that in the monomer when equivalent excited states are accounted for. Additionally, for the dimer, the decay from the second to the nearly degenerate lowest energy excited-state involves two time-scales: a rapid decay on the order of ∼10 fs followed by a slower decay of ∼100 fs. Analysis of the spatial localization of the electronic transition density during the internal conversion process points out the existence of localized states on individual monomers, indicating that the strength of thermal fluctuations exceeds electronic couplings between the states such that the exciton hops between localized states throughout the simulation.
Fil: Mukazhanova, Aliya. Boston University; Estados Unidos
Fil: Malone, Walter. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Negrín Yuvero, Lázaro Hassiel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tretiak, Sergei. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Sharifzadeh, Sahar. Boston University; Estados Unidos
description We utilize first-principles theory to investigate photo-induced excited-state dynamics of functionalized perylene diimide. This class of materials is highly suitable for solar energy conversion because of the strong optical absorbance, efficient energy transfer, and chemical tunability. We couple time-dependent density functional theory to a recently developed time-resolved non-adiabatic dynamics approach based on a semi-empirical description. By studying the monomer and dimer, we focus on the role stacking plays on the time-scales associated with excited-state non-radiative relaxation from a high excitonic state to the lowest energy exciton. We predict that the time-scale for energy conversion in the dimer is significantly faster than that in the monomer when equivalent excited states are accounted for. Additionally, for the dimer, the decay from the second to the nearly degenerate lowest energy excited-state involves two time-scales: a rapid decay on the order of ∼10 fs followed by a slower decay of ∼100 fs. Analysis of the spatial localization of the electronic transition density during the internal conversion process points out the existence of localized states on individual monomers, indicating that the strength of thermal fluctuations exceeds electronic couplings between the states such that the exciton hops between localized states throughout the simulation.
publishDate 2020
dc.date.none.fl_str_mv 2020-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/172573
Mukazhanova, Aliya; Malone, Walter; Negrín Yuvero, Lázaro Hassiel; Fernández Alberti, Sebastián; Tretiak, Sergei; et al.; Photoexcitation dynamics in perylene diimide dimers; American Institute of Physics; Journal of Chemical Physics; 153; 24; 12-2020; 1-8
0021-9606
1089-7690
CONICET Digital
CONICET
url http://hdl.handle.net/11336/172573
identifier_str_mv Mukazhanova, Aliya; Malone, Walter; Negrín Yuvero, Lázaro Hassiel; Fernández Alberti, Sebastián; Tretiak, Sergei; et al.; Photoexcitation dynamics in perylene diimide dimers; American Institute of Physics; Journal of Chemical Physics; 153; 24; 12-2020; 1-8
0021-9606
1089-7690
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/5.0031485
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0031485
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269811767246848
score 13.13397