Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects
- Autores
- Bringa, Eduardo Marcial; Traiviratana, Sirirat; Meyers, Marc A.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is shown, through molecular dynamics simulations, that the emission and outward expansion of special dislocation loops, nucleated at the surface of nanosized voids, are responsible for the outward flux of matter, promoting their growth. Calculations performed for different orientations of the tensile axis, [0 0 1], [1 1 0] and [1 1 1], reveal new features of these loops for a face-centered cubic metal, copper, and show that their extremities remain attached to the surface of voids. There is a significant effect of the loading orientation on the sequence in which the loops form and interact. As a consequence, the initially spherical voids develop facets. Calculations reveal that loop emission occurs for voids with radii as low as 0.15 nm, containing two vacancies. This occurs at a von Mises stress approximately equal to 0.12G (where G is the shear modulus of the material), and is close to the stress at which dislocation loops nucleate homogeneously. The velocities of the leading partial dislocations are measured and found to be subsonic (∼1000 m s−1). It is shown, for nanocrystalline metals that void initiation takes place at grain boundaries and that their growth proceeds by grain boundary debonding and partial dislocation emission into the grains. The principal difference with monocrystals is that the voids do not become spherical and that their growth proceeds along the boundaries. Differences in stress states (hydrostatic and uniaxial strain) are discussed. The critical stress for void nucleation and growth in the nanocrystalline metal is considerably lower than in the monocrystalline case by virtue of the availability of nucleation sites at grain boundaries (von Mises stress ∼0.05G). This suggests a hierarchy of nucleation sites in materials, starting with dispersed phases, triple points and grain boundaries, and proceeding with vacancy complexes up to divacancies.
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Traiviratana, Sirirat. University of California at San Diego; Estados Unidos
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos - Materia
-
molecular dynamics
dislocations
copper
nanostructure
voids - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/242913
Ver los metadatos del registro completo
id |
CONICETDig_8aac2c46bf3a519dfe9d5d317cdfccfe |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/242913 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effectsBringa, Eduardo MarcialTraiviratana, SiriratMeyers, Marc A.molecular dynamicsdislocationscoppernanostructurevoidshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1It is shown, through molecular dynamics simulations, that the emission and outward expansion of special dislocation loops, nucleated at the surface of nanosized voids, are responsible for the outward flux of matter, promoting their growth. Calculations performed for different orientations of the tensile axis, [0 0 1], [1 1 0] and [1 1 1], reveal new features of these loops for a face-centered cubic metal, copper, and show that their extremities remain attached to the surface of voids. There is a significant effect of the loading orientation on the sequence in which the loops form and interact. As a consequence, the initially spherical voids develop facets. Calculations reveal that loop emission occurs for voids with radii as low as 0.15 nm, containing two vacancies. This occurs at a von Mises stress approximately equal to 0.12G (where G is the shear modulus of the material), and is close to the stress at which dislocation loops nucleate homogeneously. The velocities of the leading partial dislocations are measured and found to be subsonic (∼1000 m s−1). It is shown, for nanocrystalline metals that void initiation takes place at grain boundaries and that their growth proceeds by grain boundary debonding and partial dislocation emission into the grains. The principal difference with monocrystals is that the voids do not become spherical and that their growth proceeds along the boundaries. Differences in stress states (hydrostatic and uniaxial strain) are discussed. The critical stress for void nucleation and growth in the nanocrystalline metal is considerably lower than in the monocrystalline case by virtue of the availability of nucleation sites at grain boundaries (von Mises stress ∼0.05G). This suggests a hierarchy of nucleation sites in materials, starting with dispersed phases, triple points and grain boundaries, and proceeding with vacancy complexes up to divacancies.Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Traiviratana, Sirirat. University of California at San Diego; Estados UnidosFil: Meyers, Marc A.. University of California at San Diego; Estados UnidosPergamon-Elsevier Science Ltd2010-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242913Bringa, Eduardo Marcial; Traiviratana, Sirirat; Meyers, Marc A.; Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects; Pergamon-Elsevier Science Ltd; Acta Materialia; 58; 13; 8-2010; 4458-44771359-6454CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645410002594info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2010.04.043info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:45Zoai:ri.conicet.gov.ar:11336/242913instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:45.367CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects |
title |
Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects |
spellingShingle |
Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects Bringa, Eduardo Marcial molecular dynamics dislocations copper nanostructure voids |
title_short |
Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects |
title_full |
Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects |
title_fullStr |
Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects |
title_full_unstemmed |
Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects |
title_sort |
Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects |
dc.creator.none.fl_str_mv |
Bringa, Eduardo Marcial Traiviratana, Sirirat Meyers, Marc A. |
author |
Bringa, Eduardo Marcial |
author_facet |
Bringa, Eduardo Marcial Traiviratana, Sirirat Meyers, Marc A. |
author_role |
author |
author2 |
Traiviratana, Sirirat Meyers, Marc A. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
molecular dynamics dislocations copper nanostructure voids |
topic |
molecular dynamics dislocations copper nanostructure voids |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
It is shown, through molecular dynamics simulations, that the emission and outward expansion of special dislocation loops, nucleated at the surface of nanosized voids, are responsible for the outward flux of matter, promoting their growth. Calculations performed for different orientations of the tensile axis, [0 0 1], [1 1 0] and [1 1 1], reveal new features of these loops for a face-centered cubic metal, copper, and show that their extremities remain attached to the surface of voids. There is a significant effect of the loading orientation on the sequence in which the loops form and interact. As a consequence, the initially spherical voids develop facets. Calculations reveal that loop emission occurs for voids with radii as low as 0.15 nm, containing two vacancies. This occurs at a von Mises stress approximately equal to 0.12G (where G is the shear modulus of the material), and is close to the stress at which dislocation loops nucleate homogeneously. The velocities of the leading partial dislocations are measured and found to be subsonic (∼1000 m s−1). It is shown, for nanocrystalline metals that void initiation takes place at grain boundaries and that their growth proceeds by grain boundary debonding and partial dislocation emission into the grains. The principal difference with monocrystals is that the voids do not become spherical and that their growth proceeds along the boundaries. Differences in stress states (hydrostatic and uniaxial strain) are discussed. The critical stress for void nucleation and growth in the nanocrystalline metal is considerably lower than in the monocrystalline case by virtue of the availability of nucleation sites at grain boundaries (von Mises stress ∼0.05G). This suggests a hierarchy of nucleation sites in materials, starting with dispersed phases, triple points and grain boundaries, and proceeding with vacancy complexes up to divacancies. Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Traiviratana, Sirirat. University of California at San Diego; Estados Unidos Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos |
description |
It is shown, through molecular dynamics simulations, that the emission and outward expansion of special dislocation loops, nucleated at the surface of nanosized voids, are responsible for the outward flux of matter, promoting their growth. Calculations performed for different orientations of the tensile axis, [0 0 1], [1 1 0] and [1 1 1], reveal new features of these loops for a face-centered cubic metal, copper, and show that their extremities remain attached to the surface of voids. There is a significant effect of the loading orientation on the sequence in which the loops form and interact. As a consequence, the initially spherical voids develop facets. Calculations reveal that loop emission occurs for voids with radii as low as 0.15 nm, containing two vacancies. This occurs at a von Mises stress approximately equal to 0.12G (where G is the shear modulus of the material), and is close to the stress at which dislocation loops nucleate homogeneously. The velocities of the leading partial dislocations are measured and found to be subsonic (∼1000 m s−1). It is shown, for nanocrystalline metals that void initiation takes place at grain boundaries and that their growth proceeds by grain boundary debonding and partial dislocation emission into the grains. The principal difference with monocrystals is that the voids do not become spherical and that their growth proceeds along the boundaries. Differences in stress states (hydrostatic and uniaxial strain) are discussed. The critical stress for void nucleation and growth in the nanocrystalline metal is considerably lower than in the monocrystalline case by virtue of the availability of nucleation sites at grain boundaries (von Mises stress ∼0.05G). This suggests a hierarchy of nucleation sites in materials, starting with dispersed phases, triple points and grain boundaries, and proceeding with vacancy complexes up to divacancies. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/242913 Bringa, Eduardo Marcial; Traiviratana, Sirirat; Meyers, Marc A.; Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects; Pergamon-Elsevier Science Ltd; Acta Materialia; 58; 13; 8-2010; 4458-4477 1359-6454 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/242913 |
identifier_str_mv |
Bringa, Eduardo Marcial; Traiviratana, Sirirat; Meyers, Marc A.; Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects; Pergamon-Elsevier Science Ltd; Acta Materialia; 58; 13; 8-2010; 4458-4477 1359-6454 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645410002594 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2010.04.043 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613564220833792 |
score |
13.070432 |