Effect of glidants on LaNi5 powder flowability

Autores
Melnichuk, Maximiliano; Cuscueta, Diego Javier; Silin, Nicolas
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Tension accumulation in container walls is a matter of concern in hydride based hydrogen storage systems. As the hydrogen absorbing material swells during hydrogen absorption it will need to flow and accommodate within its container. Failure to do so will result in the build-up of tensions and, eventually, in the failure of the container after a number of absorption-desorption cycles. There have been several ways of avoiding the build-up of mechanical stresses: having a container geometry that allows the swelling of the hydride, combining the hydride forming alloys with other materials that can handle the volume increase or the stresses, and adding solid lubricants to improve the ability of the hydride to accommodate within the container. In the present study we explore the application of nanoscaled powders normally used in the industry as glidant agents for bulk powders. In particular, we address the influence of three different types of glidants in the flowability of LaNi5 powder: Aerosil R 805, molybdenum disulfide (MoS2) and Vulcan XC72 carbon black. For this purpose, we have used a pressurized rotating drum device that allows hydrogen pressure or vacuum to test LaNi5 in hydrogen absorbed or desorbed states. The angle of repose results indicate an improvement on powder flowability when using Aerosil in concentrations of approximately 0.05 wt% or MoS2 at concentrations of approximately 0.1 wt%. These results are in agreement with models that explain the reduction of interparticle forces when using small quantities of nanoscaled particles. Vulcan XC72 showed no effectiveness as glidant. This unexpected behavior is most likely related to its tendency to become trapped in the cracks of the larger LaNi5 particles and to form relatively large aggregates.
Fil: Melnichuk, Maximiliano. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Cuscueta, Diego Javier. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Silin, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Materia
GLIDANT AGENTS
HYDRIDE CONTAINER TENSION ACCUMULATION
LANI5 HYDRIDE FLOWABILITY
ROTATING DRUM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/99582

id CONICETDig_8a9fe7eb6ce15a9ffb39149f9d407c9f
oai_identifier_str oai:ri.conicet.gov.ar:11336/99582
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effect of glidants on LaNi5 powder flowabilityMelnichuk, MaximilianoCuscueta, Diego JavierSilin, NicolasGLIDANT AGENTSHYDRIDE CONTAINER TENSION ACCUMULATIONLANI5 HYDRIDE FLOWABILITYROTATING DRUMhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Tension accumulation in container walls is a matter of concern in hydride based hydrogen storage systems. As the hydrogen absorbing material swells during hydrogen absorption it will need to flow and accommodate within its container. Failure to do so will result in the build-up of tensions and, eventually, in the failure of the container after a number of absorption-desorption cycles. There have been several ways of avoiding the build-up of mechanical stresses: having a container geometry that allows the swelling of the hydride, combining the hydride forming alloys with other materials that can handle the volume increase or the stresses, and adding solid lubricants to improve the ability of the hydride to accommodate within the container. In the present study we explore the application of nanoscaled powders normally used in the industry as glidant agents for bulk powders. In particular, we address the influence of three different types of glidants in the flowability of LaNi5 powder: Aerosil R 805, molybdenum disulfide (MoS2) and Vulcan XC72 carbon black. For this purpose, we have used a pressurized rotating drum device that allows hydrogen pressure or vacuum to test LaNi5 in hydrogen absorbed or desorbed states. The angle of repose results indicate an improvement on powder flowability when using Aerosil in concentrations of approximately 0.05 wt% or MoS2 at concentrations of approximately 0.1 wt%. These results are in agreement with models that explain the reduction of interparticle forces when using small quantities of nanoscaled particles. Vulcan XC72 showed no effectiveness as glidant. This unexpected behavior is most likely related to its tendency to become trapped in the cracks of the larger LaNi5 particles and to form relatively large aggregates.Fil: Melnichuk, Maximiliano. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Cuscueta, Diego Javier. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Silin, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaPergamon-Elsevier Science Ltd2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99582Melnichuk, Maximiliano; Cuscueta, Diego Javier; Silin, Nicolas; Effect of glidants on LaNi5 powder flowability; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 43; 12; 3-2018; 6219-62280360-3199CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0360319918303628info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2018.01.207info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:07Zoai:ri.conicet.gov.ar:11336/99582instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:07.552CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effect of glidants on LaNi5 powder flowability
title Effect of glidants on LaNi5 powder flowability
spellingShingle Effect of glidants on LaNi5 powder flowability
Melnichuk, Maximiliano
GLIDANT AGENTS
HYDRIDE CONTAINER TENSION ACCUMULATION
LANI5 HYDRIDE FLOWABILITY
ROTATING DRUM
title_short Effect of glidants on LaNi5 powder flowability
title_full Effect of glidants on LaNi5 powder flowability
title_fullStr Effect of glidants on LaNi5 powder flowability
title_full_unstemmed Effect of glidants on LaNi5 powder flowability
title_sort Effect of glidants on LaNi5 powder flowability
dc.creator.none.fl_str_mv Melnichuk, Maximiliano
Cuscueta, Diego Javier
Silin, Nicolas
author Melnichuk, Maximiliano
author_facet Melnichuk, Maximiliano
Cuscueta, Diego Javier
Silin, Nicolas
author_role author
author2 Cuscueta, Diego Javier
Silin, Nicolas
author2_role author
author
dc.subject.none.fl_str_mv GLIDANT AGENTS
HYDRIDE CONTAINER TENSION ACCUMULATION
LANI5 HYDRIDE FLOWABILITY
ROTATING DRUM
topic GLIDANT AGENTS
HYDRIDE CONTAINER TENSION ACCUMULATION
LANI5 HYDRIDE FLOWABILITY
ROTATING DRUM
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Tension accumulation in container walls is a matter of concern in hydride based hydrogen storage systems. As the hydrogen absorbing material swells during hydrogen absorption it will need to flow and accommodate within its container. Failure to do so will result in the build-up of tensions and, eventually, in the failure of the container after a number of absorption-desorption cycles. There have been several ways of avoiding the build-up of mechanical stresses: having a container geometry that allows the swelling of the hydride, combining the hydride forming alloys with other materials that can handle the volume increase or the stresses, and adding solid lubricants to improve the ability of the hydride to accommodate within the container. In the present study we explore the application of nanoscaled powders normally used in the industry as glidant agents for bulk powders. In particular, we address the influence of three different types of glidants in the flowability of LaNi5 powder: Aerosil R 805, molybdenum disulfide (MoS2) and Vulcan XC72 carbon black. For this purpose, we have used a pressurized rotating drum device that allows hydrogen pressure or vacuum to test LaNi5 in hydrogen absorbed or desorbed states. The angle of repose results indicate an improvement on powder flowability when using Aerosil in concentrations of approximately 0.05 wt% or MoS2 at concentrations of approximately 0.1 wt%. These results are in agreement with models that explain the reduction of interparticle forces when using small quantities of nanoscaled particles. Vulcan XC72 showed no effectiveness as glidant. This unexpected behavior is most likely related to its tendency to become trapped in the cracks of the larger LaNi5 particles and to form relatively large aggregates.
Fil: Melnichuk, Maximiliano. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Cuscueta, Diego Javier. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Silin, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
description Tension accumulation in container walls is a matter of concern in hydride based hydrogen storage systems. As the hydrogen absorbing material swells during hydrogen absorption it will need to flow and accommodate within its container. Failure to do so will result in the build-up of tensions and, eventually, in the failure of the container after a number of absorption-desorption cycles. There have been several ways of avoiding the build-up of mechanical stresses: having a container geometry that allows the swelling of the hydride, combining the hydride forming alloys with other materials that can handle the volume increase or the stresses, and adding solid lubricants to improve the ability of the hydride to accommodate within the container. In the present study we explore the application of nanoscaled powders normally used in the industry as glidant agents for bulk powders. In particular, we address the influence of three different types of glidants in the flowability of LaNi5 powder: Aerosil R 805, molybdenum disulfide (MoS2) and Vulcan XC72 carbon black. For this purpose, we have used a pressurized rotating drum device that allows hydrogen pressure or vacuum to test LaNi5 in hydrogen absorbed or desorbed states. The angle of repose results indicate an improvement on powder flowability when using Aerosil in concentrations of approximately 0.05 wt% or MoS2 at concentrations of approximately 0.1 wt%. These results are in agreement with models that explain the reduction of interparticle forces when using small quantities of nanoscaled particles. Vulcan XC72 showed no effectiveness as glidant. This unexpected behavior is most likely related to its tendency to become trapped in the cracks of the larger LaNi5 particles and to form relatively large aggregates.
publishDate 2018
dc.date.none.fl_str_mv 2018-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/99582
Melnichuk, Maximiliano; Cuscueta, Diego Javier; Silin, Nicolas; Effect of glidants on LaNi5 powder flowability; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 43; 12; 3-2018; 6219-6228
0360-3199
CONICET Digital
CONICET
url http://hdl.handle.net/11336/99582
identifier_str_mv Melnichuk, Maximiliano; Cuscueta, Diego Javier; Silin, Nicolas; Effect of glidants on LaNi5 powder flowability; Pergamon-Elsevier Science Ltd; International Journal of Hydrogen Energy; 43; 12; 3-2018; 6219-6228
0360-3199
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0360319918303628
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2018.01.207
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613546450616320
score 13.070432