Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route
- Autores
- Borovik, Paula Florencia; Oestreicher, Víctor Santiago Jesús; Huck Iriart, Cristián; Jobbagy, Matias
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications as bone repairment, signalling or drug/gene delivery. Intrinsic properties as crystalline structure, composition, particle shape and size define the successful use of these phases. Among them, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications as bone repairment, signalling or drug/gene delivery. Their intrinsic properties as crystalline structure, composition, particle shape and size define their successful use. Among these compounds, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity remains as a synthetic challenge. Herein, we have adapted the Epoxide Route for the synthesis of pure and stable ACP colloids. By using biocompatible solvents such as ethylene glycol and/or glycerine we are able to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface. remains as a synthetic challenge. Herein, we have adapted the Epoxide Route for the synthesis of pure and stable ACP colloids. By using biocompatible solvents such as ethylene glycol and/or glycerine we are able to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface.
Fil: Borovik, Paula Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina
Fil: Oestreicher, Víctor Santiago Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Valencia. Instituto de Ciencia Molecular.; España
Fil: Huck Iriart, Cristián. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Jobbagy, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Valencia. Instituto de Ciencia Molecular.; España - Materia
-
CALCIUM PHOSPHATES
EPOXIDE ROUTE
AMORPHOUS
BIOMATERIALS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/154806
Ver los metadatos del registro completo
id |
CONICETDig_8a79e41db5165330f24ad6e95feddd99 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/154806 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide RouteBorovik, Paula FlorenciaOestreicher, Víctor Santiago JesúsHuck Iriart, CristiánJobbagy, MatiasCALCIUM PHOSPHATESEPOXIDE ROUTEAMORPHOUSBIOMATERIALShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications as bone repairment, signalling or drug/gene delivery. Intrinsic properties as crystalline structure, composition, particle shape and size define the successful use of these phases. Among them, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications as bone repairment, signalling or drug/gene delivery. Their intrinsic properties as crystalline structure, composition, particle shape and size define their successful use. Among these compounds, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity remains as a synthetic challenge. Herein, we have adapted the Epoxide Route for the synthesis of pure and stable ACP colloids. By using biocompatible solvents such as ethylene glycol and/or glycerine we are able to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface. remains as a synthetic challenge. Herein, we have adapted the Epoxide Route for the synthesis of pure and stable ACP colloids. By using biocompatible solvents such as ethylene glycol and/or glycerine we are able to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface.Fil: Borovik, Paula Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Oestreicher, Víctor Santiago Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Valencia. Instituto de Ciencia Molecular.; EspañaFil: Huck Iriart, Cristián. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jobbagy, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Valencia. Instituto de Ciencia Molecular.; EspañaWiley VCH Verlag2021-04-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/154806Borovik, Paula Florencia; Oestreicher, Víctor Santiago Jesús; Huck Iriart, Cristián; Jobbagy, Matias; Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route; Wiley VCH Verlag; Chemistry- A European Journal; 27; 39; 22-4-2021; 10077–100860947-65391521-3765CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/chem.202005483info:eu-repo/semantics/altIdentifier/doi/10.1002/chem.202005483info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:54Zoai:ri.conicet.gov.ar:11336/154806instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:54.576CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route |
title |
Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route |
spellingShingle |
Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route Borovik, Paula Florencia CALCIUM PHOSPHATES EPOXIDE ROUTE AMORPHOUS BIOMATERIALS |
title_short |
Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route |
title_full |
Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route |
title_fullStr |
Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route |
title_full_unstemmed |
Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route |
title_sort |
Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route |
dc.creator.none.fl_str_mv |
Borovik, Paula Florencia Oestreicher, Víctor Santiago Jesús Huck Iriart, Cristián Jobbagy, Matias |
author |
Borovik, Paula Florencia |
author_facet |
Borovik, Paula Florencia Oestreicher, Víctor Santiago Jesús Huck Iriart, Cristián Jobbagy, Matias |
author_role |
author |
author2 |
Oestreicher, Víctor Santiago Jesús Huck Iriart, Cristián Jobbagy, Matias |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CALCIUM PHOSPHATES EPOXIDE ROUTE AMORPHOUS BIOMATERIALS |
topic |
CALCIUM PHOSPHATES EPOXIDE ROUTE AMORPHOUS BIOMATERIALS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications as bone repairment, signalling or drug/gene delivery. Intrinsic properties as crystalline structure, composition, particle shape and size define the successful use of these phases. Among them, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications as bone repairment, signalling or drug/gene delivery. Their intrinsic properties as crystalline structure, composition, particle shape and size define their successful use. Among these compounds, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity remains as a synthetic challenge. Herein, we have adapted the Epoxide Route for the synthesis of pure and stable ACP colloids. By using biocompatible solvents such as ethylene glycol and/or glycerine we are able to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface. remains as a synthetic challenge. Herein, we have adapted the Epoxide Route for the synthesis of pure and stable ACP colloids. By using biocompatible solvents such as ethylene glycol and/or glycerine we are able to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface. Fil: Borovik, Paula Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina Fil: Oestreicher, Víctor Santiago Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Valencia. Instituto de Ciencia Molecular.; España Fil: Huck Iriart, Cristián. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Jobbagy, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Valencia. Instituto de Ciencia Molecular.; España |
description |
Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications as bone repairment, signalling or drug/gene delivery. Intrinsic properties as crystalline structure, composition, particle shape and size define the successful use of these phases. Among them, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications as bone repairment, signalling or drug/gene delivery. Their intrinsic properties as crystalline structure, composition, particle shape and size define their successful use. Among these compounds, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity remains as a synthetic challenge. Herein, we have adapted the Epoxide Route for the synthesis of pure and stable ACP colloids. By using biocompatible solvents such as ethylene glycol and/or glycerine we are able to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface. remains as a synthetic challenge. Herein, we have adapted the Epoxide Route for the synthesis of pure and stable ACP colloids. By using biocompatible solvents such as ethylene glycol and/or glycerine we are able to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-22 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/154806 Borovik, Paula Florencia; Oestreicher, Víctor Santiago Jesús; Huck Iriart, Cristián; Jobbagy, Matias; Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route; Wiley VCH Verlag; Chemistry- A European Journal; 27; 39; 22-4-2021; 10077–10086 0947-6539 1521-3765 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/154806 |
identifier_str_mv |
Borovik, Paula Florencia; Oestreicher, Víctor Santiago Jesús; Huck Iriart, Cristián; Jobbagy, Matias; Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route; Wiley VCH Verlag; Chemistry- A European Journal; 27; 39; 22-4-2021; 10077–10086 0947-6539 1521-3765 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/chem.202005483 info:eu-repo/semantics/altIdentifier/doi/10.1002/chem.202005483 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley VCH Verlag |
publisher.none.fl_str_mv |
Wiley VCH Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614258369757184 |
score |
13.070432 |