Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route

Autores
Borovik, Paula Florencia; Oestreicher, Víctor Santiago Jesús; Huck Iriart, Cristián; Jobbagy, Matias
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications as bone repairment, signalling or drug/gene delivery. Intrinsic properties as crystalline structure, composition, particle shape and size define the successful use of these phases. Among them, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications as bone repairment, signalling or drug/gene delivery. Their intrinsic properties as crystalline structure, composition, particle shape and size define their successful use. Among these compounds, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity remains as a synthetic challenge. Herein, we have adapted the Epoxide Route for the synthesis of pure and stable ACP colloids. By using biocompatible solvents such as ethylene glycol and/or glycerine we are able to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface. remains as a synthetic challenge. Herein, we have adapted the Epoxide Route for the synthesis of pure and stable ACP colloids. By using biocompatible solvents such as ethylene glycol and/or glycerine we are able to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface.
Fil: Borovik, Paula Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina
Fil: Oestreicher, Víctor Santiago Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Valencia. Instituto de Ciencia Molecular.; España
Fil: Huck Iriart, Cristián. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Jobbagy, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Valencia. Instituto de Ciencia Molecular.; España
Materia
CALCIUM PHOSPHATES
EPOXIDE ROUTE
AMORPHOUS
BIOMATERIALS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/154806

id CONICETDig_8a79e41db5165330f24ad6e95feddd99
oai_identifier_str oai:ri.conicet.gov.ar:11336/154806
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide RouteBorovik, Paula FlorenciaOestreicher, Víctor Santiago JesúsHuck Iriart, CristiánJobbagy, MatiasCALCIUM PHOSPHATESEPOXIDE ROUTEAMORPHOUSBIOMATERIALShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications as bone repairment, signalling or drug/gene delivery. Intrinsic properties as crystalline structure, composition, particle shape and size define the successful use of these phases. Among them, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications as bone repairment, signalling or drug/gene delivery. Their intrinsic properties as crystalline structure, composition, particle shape and size define their successful use. Among these compounds, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity remains as a synthetic challenge. Herein, we have adapted the Epoxide Route for the synthesis of pure and stable ACP colloids. By using biocompatible solvents such as ethylene glycol and/or glycerine we are able to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface. remains as a synthetic challenge. Herein, we have adapted the Epoxide Route for the synthesis of pure and stable ACP colloids. By using biocompatible solvents such as ethylene glycol and/or glycerine we are able to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface.Fil: Borovik, Paula Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; ArgentinaFil: Oestreicher, Víctor Santiago Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Valencia. Instituto de Ciencia Molecular.; EspañaFil: Huck Iriart, Cristián. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jobbagy, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Valencia. Instituto de Ciencia Molecular.; EspañaWiley VCH Verlag2021-04-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/154806Borovik, Paula Florencia; Oestreicher, Víctor Santiago Jesús; Huck Iriart, Cristián; Jobbagy, Matias; Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route; Wiley VCH Verlag; Chemistry- A European Journal; 27; 39; 22-4-2021; 10077–100860947-65391521-3765CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/chem.202005483info:eu-repo/semantics/altIdentifier/doi/10.1002/chem.202005483info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:25:54Zoai:ri.conicet.gov.ar:11336/154806instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:25:54.576CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route
title Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route
spellingShingle Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route
Borovik, Paula Florencia
CALCIUM PHOSPHATES
EPOXIDE ROUTE
AMORPHOUS
BIOMATERIALS
title_short Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route
title_full Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route
title_fullStr Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route
title_full_unstemmed Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route
title_sort Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route
dc.creator.none.fl_str_mv Borovik, Paula Florencia
Oestreicher, Víctor Santiago Jesús
Huck Iriart, Cristián
Jobbagy, Matias
author Borovik, Paula Florencia
author_facet Borovik, Paula Florencia
Oestreicher, Víctor Santiago Jesús
Huck Iriart, Cristián
Jobbagy, Matias
author_role author
author2 Oestreicher, Víctor Santiago Jesús
Huck Iriart, Cristián
Jobbagy, Matias
author2_role author
author
author
dc.subject.none.fl_str_mv CALCIUM PHOSPHATES
EPOXIDE ROUTE
AMORPHOUS
BIOMATERIALS
topic CALCIUM PHOSPHATES
EPOXIDE ROUTE
AMORPHOUS
BIOMATERIALS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications as bone repairment, signalling or drug/gene delivery. Intrinsic properties as crystalline structure, composition, particle shape and size define the successful use of these phases. Among them, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications as bone repairment, signalling or drug/gene delivery. Their intrinsic properties as crystalline structure, composition, particle shape and size define their successful use. Among these compounds, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity remains as a synthetic challenge. Herein, we have adapted the Epoxide Route for the synthesis of pure and stable ACP colloids. By using biocompatible solvents such as ethylene glycol and/or glycerine we are able to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface. remains as a synthetic challenge. Herein, we have adapted the Epoxide Route for the synthesis of pure and stable ACP colloids. By using biocompatible solvents such as ethylene glycol and/or glycerine we are able to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface.
Fil: Borovik, Paula Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología; Argentina
Fil: Oestreicher, Víctor Santiago Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Valencia. Instituto de Ciencia Molecular.; España
Fil: Huck Iriart, Cristián. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Jobbagy, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Valencia. Instituto de Ciencia Molecular.; España
description Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications as bone repairment, signalling or drug/gene delivery. Intrinsic properties as crystalline structure, composition, particle shape and size define the successful use of these phases. Among them, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity Calcium phosphates stand among the most promising nanobiomaterials in key biomedical applications as bone repairment, signalling or drug/gene delivery. Their intrinsic properties as crystalline structure, composition, particle shape and size define their successful use. Among these compounds, metastable amorphous calcium phosphate (ACP) is currently gaining particular attention due to its inherently high reactivity in solution, which is crucial in bone development mechanisms. However, the preparation of this highly desired (bio)material with control over its shape, size and phase purity remains as a synthetic challenge. Herein, we have adapted the Epoxide Route for the synthesis of pure and stable ACP colloids. By using biocompatible solvents such as ethylene glycol and/or glycerine we are able to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface. remains as a synthetic challenge. Herein, we have adapted the Epoxide Route for the synthesis of pure and stable ACP colloids. By using biocompatible solvents such as ethylene glycol and/or glycerine we are able to avoid the natural tendency of ACP to maturate into more stable and crystalline apatites. Moreover, this procedure offers size control, ranging from small nanoparticles (60 nm) to micrometric spheroids (>500 nm). The eventual fractalization of the internal mesostructured can be tuned, by simply adjusting the composition of the ethylene glycol:glycerine solvent mixture. These findings introduce the use of green solvents as a new tool to control crystallinity and/or particle size in the synthesis of nanomaterials, avoiding the use of capping agents and preserving the natural chemical reactivity of the pristine surface.
publishDate 2021
dc.date.none.fl_str_mv 2021-04-22
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/154806
Borovik, Paula Florencia; Oestreicher, Víctor Santiago Jesús; Huck Iriart, Cristián; Jobbagy, Matias; Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route; Wiley VCH Verlag; Chemistry- A European Journal; 27; 39; 22-4-2021; 10077–10086
0947-6539
1521-3765
CONICET Digital
CONICET
url http://hdl.handle.net/11336/154806
identifier_str_mv Borovik, Paula Florencia; Oestreicher, Víctor Santiago Jesús; Huck Iriart, Cristián; Jobbagy, Matias; Amorphous calcium phosphates: Solvent‐controlled growth and stabilization through the Epoxide Route; Wiley VCH Verlag; Chemistry- A European Journal; 27; 39; 22-4-2021; 10077–10086
0947-6539
1521-3765
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/chem.202005483
info:eu-repo/semantics/altIdentifier/doi/10.1002/chem.202005483
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley VCH Verlag
publisher.none.fl_str_mv Wiley VCH Verlag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614258369757184
score 13.070432