Classification of monovarietal argentinean white wines by their elemental profile
- Autores
- Azcarate, Silvana Mariela; Martinez, Luis Dante; Savio, Marianela; Camiña, José Manuel; Gil, Raul Andres
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The possibility of acquire a chemometric model to classify Argentinean white wines according to their provenance through elemental profile was assessed. A simple method for multielement determination in wines by inductively coupled plasma mass spectrometry along with chemometric pattern-recognition techniques is proposed. A total of 57 white wine samples of the main varieties from four winegrowing regions of Argentina: Mendoza, Rio Negro, San Juan, and Salta, were evaluated. The results of principal component analysis explained 95.95% of the variance data total. Linear discriminant analysis allowed correct discrimination according to the four geographical regions evaluated, using only five ultratrace elements (Ba, As, Pb, Mo, and Co). Discrimination rates higher than 96% for prediction and validation data sets were reached. The outcomes emphasize the skillfulness of ICPMS elemental determination in combination with chemometrics, for classification of white wine and show that could be a trustworthy technique to validate the geographical origin, authenticity and quality control of wines.
Fil: Azcarate, Silvana Mariela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; Argentina
Fil: Martinez, Luis Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina
Fil: Savio, Marianela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; Argentina
Fil: Camiña, José Manuel. Universidad Nacional de la Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; Argentina
Fil: Gil, Raul Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina - Materia
-
Wine Elemental Analysis
Sample Preparation
Inductively Coupled Plasma Mass Spectrometry
Principal Component Analysis
Discriminant Analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/7420
Ver los metadatos del registro completo
id |
CONICETDig_8a69b1b480e053508d6f038b88fe56e6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/7420 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Classification of monovarietal argentinean white wines by their elemental profileAzcarate, Silvana MarielaMartinez, Luis DanteSavio, MarianelaCamiña, José ManuelGil, Raul AndresWine Elemental AnalysisSample PreparationInductively Coupled Plasma Mass SpectrometryPrincipal Component AnalysisDiscriminant Analysishttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4The possibility of acquire a chemometric model to classify Argentinean white wines according to their provenance through elemental profile was assessed. A simple method for multielement determination in wines by inductively coupled plasma mass spectrometry along with chemometric pattern-recognition techniques is proposed. A total of 57 white wine samples of the main varieties from four winegrowing regions of Argentina: Mendoza, Rio Negro, San Juan, and Salta, were evaluated. The results of principal component analysis explained 95.95% of the variance data total. Linear discriminant analysis allowed correct discrimination according to the four geographical regions evaluated, using only five ultratrace elements (Ba, As, Pb, Mo, and Co). Discrimination rates higher than 96% for prediction and validation data sets were reached. The outcomes emphasize the skillfulness of ICPMS elemental determination in combination with chemometrics, for classification of white wine and show that could be a trustworthy technique to validate the geographical origin, authenticity and quality control of wines.Fil: Azcarate, Silvana Mariela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; ArgentinaFil: Martinez, Luis Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; ArgentinaFil: Savio, Marianela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; ArgentinaFil: Camiña, José Manuel. Universidad Nacional de la Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; ArgentinaFil: Gil, Raul Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; ArgentinaElsevier2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7420Azcarate, Silvana Mariela; Martinez, Luis Dante; Savio, Marianela; Camiña, José Manuel; Gil, Raul Andres; Classification of monovarietal argentinean white wines by their elemental profile; Elsevier; Food Control; 57; 4-2015; 268-2740956-7135enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0956713515002522info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodcont.2015.04.025info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:57Zoai:ri.conicet.gov.ar:11336/7420instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:57.389CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Classification of monovarietal argentinean white wines by their elemental profile |
title |
Classification of monovarietal argentinean white wines by their elemental profile |
spellingShingle |
Classification of monovarietal argentinean white wines by their elemental profile Azcarate, Silvana Mariela Wine Elemental Analysis Sample Preparation Inductively Coupled Plasma Mass Spectrometry Principal Component Analysis Discriminant Analysis |
title_short |
Classification of monovarietal argentinean white wines by their elemental profile |
title_full |
Classification of monovarietal argentinean white wines by their elemental profile |
title_fullStr |
Classification of monovarietal argentinean white wines by their elemental profile |
title_full_unstemmed |
Classification of monovarietal argentinean white wines by their elemental profile |
title_sort |
Classification of monovarietal argentinean white wines by their elemental profile |
dc.creator.none.fl_str_mv |
Azcarate, Silvana Mariela Martinez, Luis Dante Savio, Marianela Camiña, José Manuel Gil, Raul Andres |
author |
Azcarate, Silvana Mariela |
author_facet |
Azcarate, Silvana Mariela Martinez, Luis Dante Savio, Marianela Camiña, José Manuel Gil, Raul Andres |
author_role |
author |
author2 |
Martinez, Luis Dante Savio, Marianela Camiña, José Manuel Gil, Raul Andres |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Wine Elemental Analysis Sample Preparation Inductively Coupled Plasma Mass Spectrometry Principal Component Analysis Discriminant Analysis |
topic |
Wine Elemental Analysis Sample Preparation Inductively Coupled Plasma Mass Spectrometry Principal Component Analysis Discriminant Analysis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
The possibility of acquire a chemometric model to classify Argentinean white wines according to their provenance through elemental profile was assessed. A simple method for multielement determination in wines by inductively coupled plasma mass spectrometry along with chemometric pattern-recognition techniques is proposed. A total of 57 white wine samples of the main varieties from four winegrowing regions of Argentina: Mendoza, Rio Negro, San Juan, and Salta, were evaluated. The results of principal component analysis explained 95.95% of the variance data total. Linear discriminant analysis allowed correct discrimination according to the four geographical regions evaluated, using only five ultratrace elements (Ba, As, Pb, Mo, and Co). Discrimination rates higher than 96% for prediction and validation data sets were reached. The outcomes emphasize the skillfulness of ICPMS elemental determination in combination with chemometrics, for classification of white wine and show that could be a trustworthy technique to validate the geographical origin, authenticity and quality control of wines. Fil: Azcarate, Silvana Mariela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; Argentina Fil: Martinez, Luis Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina Fil: Savio, Marianela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; Argentina Fil: Camiña, José Manuel. Universidad Nacional de la Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; Argentina Fil: Gil, Raul Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina |
description |
The possibility of acquire a chemometric model to classify Argentinean white wines according to their provenance through elemental profile was assessed. A simple method for multielement determination in wines by inductively coupled plasma mass spectrometry along with chemometric pattern-recognition techniques is proposed. A total of 57 white wine samples of the main varieties from four winegrowing regions of Argentina: Mendoza, Rio Negro, San Juan, and Salta, were evaluated. The results of principal component analysis explained 95.95% of the variance data total. Linear discriminant analysis allowed correct discrimination according to the four geographical regions evaluated, using only five ultratrace elements (Ba, As, Pb, Mo, and Co). Discrimination rates higher than 96% for prediction and validation data sets were reached. The outcomes emphasize the skillfulness of ICPMS elemental determination in combination with chemometrics, for classification of white wine and show that could be a trustworthy technique to validate the geographical origin, authenticity and quality control of wines. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/7420 Azcarate, Silvana Mariela; Martinez, Luis Dante; Savio, Marianela; Camiña, José Manuel; Gil, Raul Andres; Classification of monovarietal argentinean white wines by their elemental profile; Elsevier; Food Control; 57; 4-2015; 268-274 0956-7135 |
url |
http://hdl.handle.net/11336/7420 |
identifier_str_mv |
Azcarate, Silvana Mariela; Martinez, Luis Dante; Savio, Marianela; Camiña, José Manuel; Gil, Raul Andres; Classification of monovarietal argentinean white wines by their elemental profile; Elsevier; Food Control; 57; 4-2015; 268-274 0956-7135 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0956713515002522 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodcont.2015.04.025 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268892964061184 |
score |
12.885934 |