Classification of monovarietal argentinean white wines by their elemental profile

Autores
Azcarate, Silvana Mariela; Martinez, Luis Dante; Savio, Marianela; Camiña, José Manuel; Gil, Raul Andres
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The possibility of acquire a chemometric model to classify Argentinean white wines according to their provenance through elemental profile was assessed. A simple method for multielement determination in wines by inductively coupled plasma mass spectrometry along with chemometric pattern-recognition techniques is proposed. A total of 57 white wine samples of the main varieties from four winegrowing regions of Argentina: Mendoza, Rio Negro, San Juan, and Salta, were evaluated. The results of principal component analysis explained 95.95% of the variance data total. Linear discriminant analysis allowed correct discrimination according to the four geographical regions evaluated, using only five ultratrace elements (Ba, As, Pb, Mo, and Co). Discrimination rates higher than 96% for prediction and validation data sets were reached. The outcomes emphasize the skillfulness of ICPMS elemental determination in combination with chemometrics, for classification of white wine and show that could be a trustworthy technique to validate the geographical origin, authenticity and quality control of wines.
Fil: Azcarate, Silvana Mariela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; Argentina
Fil: Martinez, Luis Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina
Fil: Savio, Marianela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; Argentina
Fil: Camiña, José Manuel. Universidad Nacional de la Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; Argentina
Fil: Gil, Raul Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina
Materia
Wine Elemental Analysis
Sample Preparation
Inductively Coupled Plasma Mass Spectrometry
Principal Component Analysis
Discriminant Analysis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/7420

id CONICETDig_8a69b1b480e053508d6f038b88fe56e6
oai_identifier_str oai:ri.conicet.gov.ar:11336/7420
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Classification of monovarietal argentinean white wines by their elemental profileAzcarate, Silvana MarielaMartinez, Luis DanteSavio, MarianelaCamiña, José ManuelGil, Raul AndresWine Elemental AnalysisSample PreparationInductively Coupled Plasma Mass SpectrometryPrincipal Component AnalysisDiscriminant Analysishttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4The possibility of acquire a chemometric model to classify Argentinean white wines according to their provenance through elemental profile was assessed. A simple method for multielement determination in wines by inductively coupled plasma mass spectrometry along with chemometric pattern-recognition techniques is proposed. A total of 57 white wine samples of the main varieties from four winegrowing regions of Argentina: Mendoza, Rio Negro, San Juan, and Salta, were evaluated. The results of principal component analysis explained 95.95% of the variance data total. Linear discriminant analysis allowed correct discrimination according to the four geographical regions evaluated, using only five ultratrace elements (Ba, As, Pb, Mo, and Co). Discrimination rates higher than 96% for prediction and validation data sets were reached. The outcomes emphasize the skillfulness of ICPMS elemental determination in combination with chemometrics, for classification of white wine and show that could be a trustworthy technique to validate the geographical origin, authenticity and quality control of wines.Fil: Azcarate, Silvana Mariela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; ArgentinaFil: Martinez, Luis Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; ArgentinaFil: Savio, Marianela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; ArgentinaFil: Camiña, José Manuel. Universidad Nacional de la Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; ArgentinaFil: Gil, Raul Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; ArgentinaElsevier2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7420Azcarate, Silvana Mariela; Martinez, Luis Dante; Savio, Marianela; Camiña, José Manuel; Gil, Raul Andres; Classification of monovarietal argentinean white wines by their elemental profile; Elsevier; Food Control; 57; 4-2015; 268-2740956-7135enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0956713515002522info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodcont.2015.04.025info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:57Zoai:ri.conicet.gov.ar:11336/7420instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:57.389CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Classification of monovarietal argentinean white wines by their elemental profile
title Classification of monovarietal argentinean white wines by their elemental profile
spellingShingle Classification of monovarietal argentinean white wines by their elemental profile
Azcarate, Silvana Mariela
Wine Elemental Analysis
Sample Preparation
Inductively Coupled Plasma Mass Spectrometry
Principal Component Analysis
Discriminant Analysis
title_short Classification of monovarietal argentinean white wines by their elemental profile
title_full Classification of monovarietal argentinean white wines by their elemental profile
title_fullStr Classification of monovarietal argentinean white wines by their elemental profile
title_full_unstemmed Classification of monovarietal argentinean white wines by their elemental profile
title_sort Classification of monovarietal argentinean white wines by their elemental profile
dc.creator.none.fl_str_mv Azcarate, Silvana Mariela
Martinez, Luis Dante
Savio, Marianela
Camiña, José Manuel
Gil, Raul Andres
author Azcarate, Silvana Mariela
author_facet Azcarate, Silvana Mariela
Martinez, Luis Dante
Savio, Marianela
Camiña, José Manuel
Gil, Raul Andres
author_role author
author2 Martinez, Luis Dante
Savio, Marianela
Camiña, José Manuel
Gil, Raul Andres
author2_role author
author
author
author
dc.subject.none.fl_str_mv Wine Elemental Analysis
Sample Preparation
Inductively Coupled Plasma Mass Spectrometry
Principal Component Analysis
Discriminant Analysis
topic Wine Elemental Analysis
Sample Preparation
Inductively Coupled Plasma Mass Spectrometry
Principal Component Analysis
Discriminant Analysis
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv The possibility of acquire a chemometric model to classify Argentinean white wines according to their provenance through elemental profile was assessed. A simple method for multielement determination in wines by inductively coupled plasma mass spectrometry along with chemometric pattern-recognition techniques is proposed. A total of 57 white wine samples of the main varieties from four winegrowing regions of Argentina: Mendoza, Rio Negro, San Juan, and Salta, were evaluated. The results of principal component analysis explained 95.95% of the variance data total. Linear discriminant analysis allowed correct discrimination according to the four geographical regions evaluated, using only five ultratrace elements (Ba, As, Pb, Mo, and Co). Discrimination rates higher than 96% for prediction and validation data sets were reached. The outcomes emphasize the skillfulness of ICPMS elemental determination in combination with chemometrics, for classification of white wine and show that could be a trustworthy technique to validate the geographical origin, authenticity and quality control of wines.
Fil: Azcarate, Silvana Mariela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; Argentina
Fil: Martinez, Luis Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina
Fil: Savio, Marianela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; Argentina
Fil: Camiña, José Manuel. Universidad Nacional de la Pampa. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Ciencias de la Tierra y Ambientales de la Pampa; Argentina
Fil: Gil, Raul Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Química de San Luis; Argentina
description The possibility of acquire a chemometric model to classify Argentinean white wines according to their provenance through elemental profile was assessed. A simple method for multielement determination in wines by inductively coupled plasma mass spectrometry along with chemometric pattern-recognition techniques is proposed. A total of 57 white wine samples of the main varieties from four winegrowing regions of Argentina: Mendoza, Rio Negro, San Juan, and Salta, were evaluated. The results of principal component analysis explained 95.95% of the variance data total. Linear discriminant analysis allowed correct discrimination according to the four geographical regions evaluated, using only five ultratrace elements (Ba, As, Pb, Mo, and Co). Discrimination rates higher than 96% for prediction and validation data sets were reached. The outcomes emphasize the skillfulness of ICPMS elemental determination in combination with chemometrics, for classification of white wine and show that could be a trustworthy technique to validate the geographical origin, authenticity and quality control of wines.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/7420
Azcarate, Silvana Mariela; Martinez, Luis Dante; Savio, Marianela; Camiña, José Manuel; Gil, Raul Andres; Classification of monovarietal argentinean white wines by their elemental profile; Elsevier; Food Control; 57; 4-2015; 268-274
0956-7135
url http://hdl.handle.net/11336/7420
identifier_str_mv Azcarate, Silvana Mariela; Martinez, Luis Dante; Savio, Marianela; Camiña, José Manuel; Gil, Raul Andres; Classification of monovarietal argentinean white wines by their elemental profile; Elsevier; Food Control; 57; 4-2015; 268-274
0956-7135
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0956713515002522
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodcont.2015.04.025
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268892964061184
score 12.885934