The non-pure version of the simplex and the boundary of the simplex

Autores
Capitelli, Nicolás Ariel
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce the non-pure versions of simplicial balls and spheres with minimum number of vertices. These are a special type of non-homogeneous balls and spheres (NH-balls and NH-spheres) satisfying a minimality condition on the number of facets. The main result is that minimal NH-balls and NH-spheres are precisely the simplicial complexes whose iterated Alexander duals converge respectively to a simplex or the boundary of a simplex.
Fil: Capitelli, Nicolás Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Simplicial Complex
Combinatorial Manifolds
Alexander Dual
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18889

id CONICETDig_896b2f32c85223338536a981cba92bdf
oai_identifier_str oai:ri.conicet.gov.ar:11336/18889
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The non-pure version of the simplex and the boundary of the simplexCapitelli, Nicolás ArielSimplicial ComplexCombinatorial ManifoldsAlexander Dualhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce the non-pure versions of simplicial balls and spheres with minimum number of vertices. These are a special type of non-homogeneous balls and spheres (NH-balls and NH-spheres) satisfying a minimality condition on the number of facets. The main result is that minimal NH-balls and NH-spheres are precisely the simplicial complexes whose iterated Alexander duals converge respectively to a simplex or the boundary of a simplex.Fil: Capitelli, Nicolás Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier Science2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18889Capitelli, Nicolás Ariel; The non-pure version of the simplex and the boundary of the simplex; Elsevier Science; Computational Geometry-theory And Applications; 57; 8-2016; 19-260925-7721CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.comgeo.2016.05.002info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925772116300451info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1406.6434info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:01Zoai:ri.conicet.gov.ar:11336/18889instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:02.215CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The non-pure version of the simplex and the boundary of the simplex
title The non-pure version of the simplex and the boundary of the simplex
spellingShingle The non-pure version of the simplex and the boundary of the simplex
Capitelli, Nicolás Ariel
Simplicial Complex
Combinatorial Manifolds
Alexander Dual
title_short The non-pure version of the simplex and the boundary of the simplex
title_full The non-pure version of the simplex and the boundary of the simplex
title_fullStr The non-pure version of the simplex and the boundary of the simplex
title_full_unstemmed The non-pure version of the simplex and the boundary of the simplex
title_sort The non-pure version of the simplex and the boundary of the simplex
dc.creator.none.fl_str_mv Capitelli, Nicolás Ariel
author Capitelli, Nicolás Ariel
author_facet Capitelli, Nicolás Ariel
author_role author
dc.subject.none.fl_str_mv Simplicial Complex
Combinatorial Manifolds
Alexander Dual
topic Simplicial Complex
Combinatorial Manifolds
Alexander Dual
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce the non-pure versions of simplicial balls and spheres with minimum number of vertices. These are a special type of non-homogeneous balls and spheres (NH-balls and NH-spheres) satisfying a minimality condition on the number of facets. The main result is that minimal NH-balls and NH-spheres are precisely the simplicial complexes whose iterated Alexander duals converge respectively to a simplex or the boundary of a simplex.
Fil: Capitelli, Nicolás Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We introduce the non-pure versions of simplicial balls and spheres with minimum number of vertices. These are a special type of non-homogeneous balls and spheres (NH-balls and NH-spheres) satisfying a minimality condition on the number of facets. The main result is that minimal NH-balls and NH-spheres are precisely the simplicial complexes whose iterated Alexander duals converge respectively to a simplex or the boundary of a simplex.
publishDate 2016
dc.date.none.fl_str_mv 2016-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18889
Capitelli, Nicolás Ariel; The non-pure version of the simplex and the boundary of the simplex; Elsevier Science; Computational Geometry-theory And Applications; 57; 8-2016; 19-26
0925-7721
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18889
identifier_str_mv Capitelli, Nicolás Ariel; The non-pure version of the simplex and the boundary of the simplex; Elsevier Science; Computational Geometry-theory And Applications; 57; 8-2016; 19-26
0925-7721
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.comgeo.2016.05.002
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925772116300451
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1406.6434
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614177270792192
score 13.070432