Underlying Thermodynamics of pH-Dependent Allostery
- Autores
- Di Russo, Natali V.; Marti, Marcelo Adrian; Roitberg, Adrián
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Understanding the effects of coupling protein protonation and conformational states is critical to the development of drugs targeting pH sensors and to the rational engineering of pH switches. In this work, we address this issue by performing a comprehensive study of the pH-regulated switch from the closed to the open conformation in nitrophorin 4 (NP4) that determines its pH-dependent activity. Our calculations show that D30 is the only amino acid that has two significantly different pKas in the open and closed conformations, confirming its critical role in regulating pH-dependent behavior. In addition, we describe the free-energy landscape of the conformational change as a function of pH, obtaining accurate estimations of free-energy barriers and equilibrium constants using different methods. The underlying thermodynamic model of the switch workings suggests the possibility of tuning the observed pKa only through the conformational equilibria, keeping the same conformation-specific pKas, as evidenced by the proposed K125L mutant. Moreover, coupling between the protonation and conformational equilibria results in efficient regulation and pH-sensing around physiological pH values only for some combinations of protonation and conformational equilibrium constants, placing constraints on their possible values and leaving a narrow space for protein molecular evolution. The calculations and analysis presented here are of general applicability and provide a guide as to how more complex systems can be studied, offering insight into how pH-regulated allostery works of great value for designing drugs that target pH sensors and for rational engineering of pH switches beyond the common histidine trigger.
Fil: Di Russo, Natali V.. University of Florida; Estados Unidos
Fil: Marti, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Roitberg, Adrián. University of Florida; Estados Unidos - Materia
-
Ph-Dependent
Allostery - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/66664
Ver los metadatos del registro completo
id |
CONICETDig_8817e4eabe8caefc8df55a4f0cef9945 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/66664 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Underlying Thermodynamics of pH-Dependent AllosteryDi Russo, Natali V.Marti, Marcelo AdrianRoitberg, AdriánPh-DependentAllosteryhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Understanding the effects of coupling protein protonation and conformational states is critical to the development of drugs targeting pH sensors and to the rational engineering of pH switches. In this work, we address this issue by performing a comprehensive study of the pH-regulated switch from the closed to the open conformation in nitrophorin 4 (NP4) that determines its pH-dependent activity. Our calculations show that D30 is the only amino acid that has two significantly different pKas in the open and closed conformations, confirming its critical role in regulating pH-dependent behavior. In addition, we describe the free-energy landscape of the conformational change as a function of pH, obtaining accurate estimations of free-energy barriers and equilibrium constants using different methods. The underlying thermodynamic model of the switch workings suggests the possibility of tuning the observed pKa only through the conformational equilibria, keeping the same conformation-specific pKas, as evidenced by the proposed K125L mutant. Moreover, coupling between the protonation and conformational equilibria results in efficient regulation and pH-sensing around physiological pH values only for some combinations of protonation and conformational equilibrium constants, placing constraints on their possible values and leaving a narrow space for protein molecular evolution. The calculations and analysis presented here are of general applicability and provide a guide as to how more complex systems can be studied, offering insight into how pH-regulated allostery works of great value for designing drugs that target pH sensors and for rational engineering of pH switches beyond the common histidine trigger.Fil: Di Russo, Natali V.. University of Florida; Estados UnidosFil: Marti, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Roitberg, Adrián. University of Florida; Estados UnidosAmerican Chemical Society2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/66664Di Russo, Natali V.; Marti, Marcelo Adrian; Roitberg, Adrián; Underlying Thermodynamics of pH-Dependent Allostery; American Chemical Society; Journal of Physical Chemistry B; 118; 45; 11-2014; 12818-128261520-6106CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/jp507971vinfo:eu-repo/semantics/altIdentifier/doi/10.1021/jp507971vinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:12Zoai:ri.conicet.gov.ar:11336/66664instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:13.263CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Underlying Thermodynamics of pH-Dependent Allostery |
title |
Underlying Thermodynamics of pH-Dependent Allostery |
spellingShingle |
Underlying Thermodynamics of pH-Dependent Allostery Di Russo, Natali V. Ph-Dependent Allostery |
title_short |
Underlying Thermodynamics of pH-Dependent Allostery |
title_full |
Underlying Thermodynamics of pH-Dependent Allostery |
title_fullStr |
Underlying Thermodynamics of pH-Dependent Allostery |
title_full_unstemmed |
Underlying Thermodynamics of pH-Dependent Allostery |
title_sort |
Underlying Thermodynamics of pH-Dependent Allostery |
dc.creator.none.fl_str_mv |
Di Russo, Natali V. Marti, Marcelo Adrian Roitberg, Adrián |
author |
Di Russo, Natali V. |
author_facet |
Di Russo, Natali V. Marti, Marcelo Adrian Roitberg, Adrián |
author_role |
author |
author2 |
Marti, Marcelo Adrian Roitberg, Adrián |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ph-Dependent Allostery |
topic |
Ph-Dependent Allostery |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Understanding the effects of coupling protein protonation and conformational states is critical to the development of drugs targeting pH sensors and to the rational engineering of pH switches. In this work, we address this issue by performing a comprehensive study of the pH-regulated switch from the closed to the open conformation in nitrophorin 4 (NP4) that determines its pH-dependent activity. Our calculations show that D30 is the only amino acid that has two significantly different pKas in the open and closed conformations, confirming its critical role in regulating pH-dependent behavior. In addition, we describe the free-energy landscape of the conformational change as a function of pH, obtaining accurate estimations of free-energy barriers and equilibrium constants using different methods. The underlying thermodynamic model of the switch workings suggests the possibility of tuning the observed pKa only through the conformational equilibria, keeping the same conformation-specific pKas, as evidenced by the proposed K125L mutant. Moreover, coupling between the protonation and conformational equilibria results in efficient regulation and pH-sensing around physiological pH values only for some combinations of protonation and conformational equilibrium constants, placing constraints on their possible values and leaving a narrow space for protein molecular evolution. The calculations and analysis presented here are of general applicability and provide a guide as to how more complex systems can be studied, offering insight into how pH-regulated allostery works of great value for designing drugs that target pH sensors and for rational engineering of pH switches beyond the common histidine trigger. Fil: Di Russo, Natali V.. University of Florida; Estados Unidos Fil: Marti, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina Fil: Roitberg, Adrián. University of Florida; Estados Unidos |
description |
Understanding the effects of coupling protein protonation and conformational states is critical to the development of drugs targeting pH sensors and to the rational engineering of pH switches. In this work, we address this issue by performing a comprehensive study of the pH-regulated switch from the closed to the open conformation in nitrophorin 4 (NP4) that determines its pH-dependent activity. Our calculations show that D30 is the only amino acid that has two significantly different pKas in the open and closed conformations, confirming its critical role in regulating pH-dependent behavior. In addition, we describe the free-energy landscape of the conformational change as a function of pH, obtaining accurate estimations of free-energy barriers and equilibrium constants using different methods. The underlying thermodynamic model of the switch workings suggests the possibility of tuning the observed pKa only through the conformational equilibria, keeping the same conformation-specific pKas, as evidenced by the proposed K125L mutant. Moreover, coupling between the protonation and conformational equilibria results in efficient regulation and pH-sensing around physiological pH values only for some combinations of protonation and conformational equilibrium constants, placing constraints on their possible values and leaving a narrow space for protein molecular evolution. The calculations and analysis presented here are of general applicability and provide a guide as to how more complex systems can be studied, offering insight into how pH-regulated allostery works of great value for designing drugs that target pH sensors and for rational engineering of pH switches beyond the common histidine trigger. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/66664 Di Russo, Natali V.; Marti, Marcelo Adrian; Roitberg, Adrián; Underlying Thermodynamics of pH-Dependent Allostery; American Chemical Society; Journal of Physical Chemistry B; 118; 45; 11-2014; 12818-12826 1520-6106 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/66664 |
identifier_str_mv |
Di Russo, Natali V.; Marti, Marcelo Adrian; Roitberg, Adrián; Underlying Thermodynamics of pH-Dependent Allostery; American Chemical Society; Journal of Physical Chemistry B; 118; 45; 11-2014; 12818-12826 1520-6106 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/jp507971v info:eu-repo/semantics/altIdentifier/doi/10.1021/jp507971v |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269899631624192 |
score |
13.13397 |