Temperature effect on the magnetic oscillations in 2D materials

Autores
Escudero, Federico Nahuel; Ardenghi, Juan Sebastian; Jasen, Paula Verónica
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the magnetic oscillations (MO) in 2D materials with a buckled honeycomb lattice, considering a perpendicular electric and magnetic field. At zero temperature the MO consist of the sum of four sawtooth oscillations, with two unique frequencies and phases. The values of these frequencies depend on the Fermi energy and electric field, which in turn determine the condition for a beating phenomenon in the MO. We analyse the temperature effect in the MO by considering its local corrections over each magnetization peak, given by Fermi–Dirac like functions. We show that the width of these functions is related to the minimum temperature necessary to observe the spin and valley properties in the MO. In particular, we find that in order to observe the spin splitting, the width must be lower than the MO phase difference. Likewise, in order to observe valley mixing effects, the width must be lower than the MO period. We also show that at high temperatures, all the maxima and minima in the MO shift to a constant value, in which case we obtain a simple expression for the MO and its envelope. The results obtained show unique features in the MO in 2D materials, given by the interplay between the valley and spin.
Fil: Escudero, Federico Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Ardenghi, Juan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Jasen, Paula Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Materia
2D MATERIALS
MAGNETIC OSCILLATONS
TEMPERATURE
SPIN SPLITTING
VALLEY MIXING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/111337

id CONICETDig_87143beeeb640e22b0f84afaaaf4a845
oai_identifier_str oai:ri.conicet.gov.ar:11336/111337
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Temperature effect on the magnetic oscillations in 2D materialsEscudero, Federico NahuelArdenghi, Juan SebastianJasen, Paula Verónica2D MATERIALSMAGNETIC OSCILLATONSTEMPERATURESPIN SPLITTINGVALLEY MIXINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the magnetic oscillations (MO) in 2D materials with a buckled honeycomb lattice, considering a perpendicular electric and magnetic field. At zero temperature the MO consist of the sum of four sawtooth oscillations, with two unique frequencies and phases. The values of these frequencies depend on the Fermi energy and electric field, which in turn determine the condition for a beating phenomenon in the MO. We analyse the temperature effect in the MO by considering its local corrections over each magnetization peak, given by Fermi–Dirac like functions. We show that the width of these functions is related to the minimum temperature necessary to observe the spin and valley properties in the MO. In particular, we find that in order to observe the spin splitting, the width must be lower than the MO phase difference. Likewise, in order to observe valley mixing effects, the width must be lower than the MO period. We also show that at high temperatures, all the maxima and minima in the MO shift to a constant value, in which case we obtain a simple expression for the MO and its envelope. The results obtained show unique features in the MO in 2D materials, given by the interplay between the valley and spin.Fil: Escudero, Federico Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Ardenghi, Juan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Jasen, Paula Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaIOP Publishing2019-07-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/111337Escudero, Federico Nahuel; Ardenghi, Juan Sebastian; Jasen, Paula Verónica; Temperature effect on the magnetic oscillations in 2D materials; IOP Publishing; Journal of Physics: Condensed Matter; 31; 28; 17-7-20190953-8984CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-648X/ab14b6info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-648X/ab14b6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:29Zoai:ri.conicet.gov.ar:11336/111337instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:29.431CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Temperature effect on the magnetic oscillations in 2D materials
title Temperature effect on the magnetic oscillations in 2D materials
spellingShingle Temperature effect on the magnetic oscillations in 2D materials
Escudero, Federico Nahuel
2D MATERIALS
MAGNETIC OSCILLATONS
TEMPERATURE
SPIN SPLITTING
VALLEY MIXING
title_short Temperature effect on the magnetic oscillations in 2D materials
title_full Temperature effect on the magnetic oscillations in 2D materials
title_fullStr Temperature effect on the magnetic oscillations in 2D materials
title_full_unstemmed Temperature effect on the magnetic oscillations in 2D materials
title_sort Temperature effect on the magnetic oscillations in 2D materials
dc.creator.none.fl_str_mv Escudero, Federico Nahuel
Ardenghi, Juan Sebastian
Jasen, Paula Verónica
author Escudero, Federico Nahuel
author_facet Escudero, Federico Nahuel
Ardenghi, Juan Sebastian
Jasen, Paula Verónica
author_role author
author2 Ardenghi, Juan Sebastian
Jasen, Paula Verónica
author2_role author
author
dc.subject.none.fl_str_mv 2D MATERIALS
MAGNETIC OSCILLATONS
TEMPERATURE
SPIN SPLITTING
VALLEY MIXING
topic 2D MATERIALS
MAGNETIC OSCILLATONS
TEMPERATURE
SPIN SPLITTING
VALLEY MIXING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the magnetic oscillations (MO) in 2D materials with a buckled honeycomb lattice, considering a perpendicular electric and magnetic field. At zero temperature the MO consist of the sum of four sawtooth oscillations, with two unique frequencies and phases. The values of these frequencies depend on the Fermi energy and electric field, which in turn determine the condition for a beating phenomenon in the MO. We analyse the temperature effect in the MO by considering its local corrections over each magnetization peak, given by Fermi–Dirac like functions. We show that the width of these functions is related to the minimum temperature necessary to observe the spin and valley properties in the MO. In particular, we find that in order to observe the spin splitting, the width must be lower than the MO phase difference. Likewise, in order to observe valley mixing effects, the width must be lower than the MO period. We also show that at high temperatures, all the maxima and minima in the MO shift to a constant value, in which case we obtain a simple expression for the MO and its envelope. The results obtained show unique features in the MO in 2D materials, given by the interplay between the valley and spin.
Fil: Escudero, Federico Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Ardenghi, Juan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Jasen, Paula Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
description We study the magnetic oscillations (MO) in 2D materials with a buckled honeycomb lattice, considering a perpendicular electric and magnetic field. At zero temperature the MO consist of the sum of four sawtooth oscillations, with two unique frequencies and phases. The values of these frequencies depend on the Fermi energy and electric field, which in turn determine the condition for a beating phenomenon in the MO. We analyse the temperature effect in the MO by considering its local corrections over each magnetization peak, given by Fermi–Dirac like functions. We show that the width of these functions is related to the minimum temperature necessary to observe the spin and valley properties in the MO. In particular, we find that in order to observe the spin splitting, the width must be lower than the MO phase difference. Likewise, in order to observe valley mixing effects, the width must be lower than the MO period. We also show that at high temperatures, all the maxima and minima in the MO shift to a constant value, in which case we obtain a simple expression for the MO and its envelope. The results obtained show unique features in the MO in 2D materials, given by the interplay between the valley and spin.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-17
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/111337
Escudero, Federico Nahuel; Ardenghi, Juan Sebastian; Jasen, Paula Verónica; Temperature effect on the magnetic oscillations in 2D materials; IOP Publishing; Journal of Physics: Condensed Matter; 31; 28; 17-7-2019
0953-8984
CONICET Digital
CONICET
url http://hdl.handle.net/11336/111337
identifier_str_mv Escudero, Federico Nahuel; Ardenghi, Juan Sebastian; Jasen, Paula Verónica; Temperature effect on the magnetic oscillations in 2D materials; IOP Publishing; Journal of Physics: Condensed Matter; 31; 28; 17-7-2019
0953-8984
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-648X/ab14b6
info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-648X/ab14b6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613719525425152
score 13.070432