Inference of Demographic Attributes based on Mobile Phone Usage Patterns and Social Network Topology
- Autores
- Sarraute, Carlos; Brea, Jorge; Burroni, Javier; Blanc, Pablo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Mobile phone usage provides a wealth of information, which can be used to better understand the demographic structure of a population. In this paper, we focus on the population of Mexican mobile phone users. We first present an observational study of mobile phone usage according to gender and age groups. We are able to detect significant differences in phone usage among different subgroups of the population. We then study the performance of different machine learning (ML) methods to predict demographic features (namely, age and gender) of unlabeled users by leveraging individual calling patterns, as well as the structure of the communication graph. We show how a specific implementation of a diffusion model, harnessing the graph structure, has significantly better performance over other node-based standard ML methods. We provide details of the methodology together with an analysis of the robustness of our results to changes in the model parameters. Furthermore, by carefully examining the topological relations of the training nodes (seed nodes) to the rest of the nodes in the network, we find topological metrics which have a direct influence on the performance of the algorithm.
Fil: Sarraute, Carlos. Grandata Labs; Argentina
Fil: Brea, Jorge. Grandata Labs; Argentina
Fil: Burroni, Javier. Grandata Labs; Argentina
Fil: Blanc, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina - Materia
-
Social Network Analysis
Mobile Phone Social Network
Call Detail Records
Graph Mining
Demographics
Homophily - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18865
Ver los metadatos del registro completo
id |
CONICETDig_86dd04ff0140f5e812683cd9a35ec69f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18865 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Inference of Demographic Attributes based on Mobile Phone Usage Patterns and Social Network TopologySarraute, CarlosBrea, JorgeBurroni, JavierBlanc, PabloSocial Network AnalysisMobile Phone Social NetworkCall Detail RecordsGraph MiningDemographicsHomophilyhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Mobile phone usage provides a wealth of information, which can be used to better understand the demographic structure of a population. In this paper, we focus on the population of Mexican mobile phone users. We first present an observational study of mobile phone usage according to gender and age groups. We are able to detect significant differences in phone usage among different subgroups of the population. We then study the performance of different machine learning (ML) methods to predict demographic features (namely, age and gender) of unlabeled users by leveraging individual calling patterns, as well as the structure of the communication graph. We show how a specific implementation of a diffusion model, harnessing the graph structure, has significantly better performance over other node-based standard ML methods. We provide details of the methodology together with an analysis of the robustness of our results to changes in the model parameters. Furthermore, by carefully examining the topological relations of the training nodes (seed nodes) to the rest of the nodes in the network, we find topological metrics which have a direct influence on the performance of the algorithm.Fil: Sarraute, Carlos. Grandata Labs; ArgentinaFil: Brea, Jorge. Grandata Labs; ArgentinaFil: Burroni, Javier. Grandata Labs; ArgentinaFil: Blanc, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaSpringer2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18865Sarraute, Carlos; Brea, Jorge; Burroni, Javier; Blanc, Pablo; Inference of Demographic Attributes based on Mobile Phone Usage Patterns and Social Network Topology ; Springer; Social Network Analysis and Mining; 5; 12-2015; 1-16; 391869-54501869-5469CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s13278-015-0277-xinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s13278-015-0277-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:58Zoai:ri.conicet.gov.ar:11336/18865instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:59.201CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Inference of Demographic Attributes based on Mobile Phone Usage Patterns and Social Network Topology |
title |
Inference of Demographic Attributes based on Mobile Phone Usage Patterns and Social Network Topology |
spellingShingle |
Inference of Demographic Attributes based on Mobile Phone Usage Patterns and Social Network Topology Sarraute, Carlos Social Network Analysis Mobile Phone Social Network Call Detail Records Graph Mining Demographics Homophily |
title_short |
Inference of Demographic Attributes based on Mobile Phone Usage Patterns and Social Network Topology |
title_full |
Inference of Demographic Attributes based on Mobile Phone Usage Patterns and Social Network Topology |
title_fullStr |
Inference of Demographic Attributes based on Mobile Phone Usage Patterns and Social Network Topology |
title_full_unstemmed |
Inference of Demographic Attributes based on Mobile Phone Usage Patterns and Social Network Topology |
title_sort |
Inference of Demographic Attributes based on Mobile Phone Usage Patterns and Social Network Topology |
dc.creator.none.fl_str_mv |
Sarraute, Carlos Brea, Jorge Burroni, Javier Blanc, Pablo |
author |
Sarraute, Carlos |
author_facet |
Sarraute, Carlos Brea, Jorge Burroni, Javier Blanc, Pablo |
author_role |
author |
author2 |
Brea, Jorge Burroni, Javier Blanc, Pablo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Social Network Analysis Mobile Phone Social Network Call Detail Records Graph Mining Demographics Homophily |
topic |
Social Network Analysis Mobile Phone Social Network Call Detail Records Graph Mining Demographics Homophily |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Mobile phone usage provides a wealth of information, which can be used to better understand the demographic structure of a population. In this paper, we focus on the population of Mexican mobile phone users. We first present an observational study of mobile phone usage according to gender and age groups. We are able to detect significant differences in phone usage among different subgroups of the population. We then study the performance of different machine learning (ML) methods to predict demographic features (namely, age and gender) of unlabeled users by leveraging individual calling patterns, as well as the structure of the communication graph. We show how a specific implementation of a diffusion model, harnessing the graph structure, has significantly better performance over other node-based standard ML methods. We provide details of the methodology together with an analysis of the robustness of our results to changes in the model parameters. Furthermore, by carefully examining the topological relations of the training nodes (seed nodes) to the rest of the nodes in the network, we find topological metrics which have a direct influence on the performance of the algorithm. Fil: Sarraute, Carlos. Grandata Labs; Argentina Fil: Brea, Jorge. Grandata Labs; Argentina Fil: Burroni, Javier. Grandata Labs; Argentina Fil: Blanc, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina |
description |
Mobile phone usage provides a wealth of information, which can be used to better understand the demographic structure of a population. In this paper, we focus on the population of Mexican mobile phone users. We first present an observational study of mobile phone usage according to gender and age groups. We are able to detect significant differences in phone usage among different subgroups of the population. We then study the performance of different machine learning (ML) methods to predict demographic features (namely, age and gender) of unlabeled users by leveraging individual calling patterns, as well as the structure of the communication graph. We show how a specific implementation of a diffusion model, harnessing the graph structure, has significantly better performance over other node-based standard ML methods. We provide details of the methodology together with an analysis of the robustness of our results to changes in the model parameters. Furthermore, by carefully examining the topological relations of the training nodes (seed nodes) to the rest of the nodes in the network, we find topological metrics which have a direct influence on the performance of the algorithm. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18865 Sarraute, Carlos; Brea, Jorge; Burroni, Javier; Blanc, Pablo; Inference of Demographic Attributes based on Mobile Phone Usage Patterns and Social Network Topology ; Springer; Social Network Analysis and Mining; 5; 12-2015; 1-16; 39 1869-5450 1869-5469 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18865 |
identifier_str_mv |
Sarraute, Carlos; Brea, Jorge; Burroni, Javier; Blanc, Pablo; Inference of Demographic Attributes based on Mobile Phone Usage Patterns and Social Network Topology ; Springer; Social Network Analysis and Mining; 5; 12-2015; 1-16; 39 1869-5450 1869-5469 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s13278-015-0277-x info:eu-repo/semantics/altIdentifier/doi/10.1007/s13278-015-0277-x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613264473849856 |
score |
13.070432 |