Effect of organic calcium salts–inulin systems on hydration and thermal properties of wheat flour

Autores
Salinas, Maria Victoria; Puppo, Maria Cecilia
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The aim of this work was to study the effect of calcium acid salts–inulin systems on hydration and thermal properties of wheat flour dough. Wheat flour was enriched with calcium lactate (CaLa2) or calcium citrate (Ca3Ci2) (1080–2520 ppm Ca) and inulin (In) (1%–13%, w/w flour basis). Water absorption (Wabs), moisture content (Mcont), water activity (aw) and relaxation time (λ) of dough were analyzed. Pasting properties during heating–cooling process were studied: peak viscosity (PV), breakdown (BD), final viscosity (FV) and setback 1(SB1) were determined. Temperatures (TpI, TpII) and enthalpy (ΔHgel) of gelatinization of dough were analyzed by DSC. Samples with Ca and In presented lower Wabs than control sample with an In2 dependence, with slight difference between both surface responses. More time for dough development (td) was necessary with Ca3Ci2 than with CaLa2, being td independent of calcium content at In level (≥6.5%). Dough with Ca3Ci2 was more stable with less degree of softening than CaLa2-dough, due to the protein stabilizing effect of citrate ion (Hofmeister series) with a maximum at 6.5% In. Mcont and λ decreased with the increase of In, independently of calcium. Hydration properties directly influenced pasting parameters. The increase in In content decreased viscosity (PV, FV) without affecting BD. SB1 behavior suggests the formation of pastes with low and high stability with CaLa2 and Ca3Ci2, respectively. Gelatinization degree decreased (40%) and retarded (ΔT=10 °C) at high levels of both ingredients. CaLa2 had more influence in hydration and thermal properties of wheat flour–inulin blends, enhancing a high degree of inhibition of gelatinization and leading to pastes with low viscosity after cooling. This behavior was influenced by the presence of inulin.
Fil: Salinas, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones En Criotecnología de Alimentos (i); Argentina
Fil: Puppo, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones En Criotecnología de Alimentos (i); Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; Argentina
Materia
Calcium Lactate/Citrateinulin System
Wheat Flour
Hydration Properties
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/10261

id CONICETDig_864e610af42853a6766c2720307ee06c
oai_identifier_str oai:ri.conicet.gov.ar:11336/10261
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effect of organic calcium salts–inulin systems on hydration and thermal properties of wheat flourSalinas, Maria VictoriaPuppo, Maria CeciliaCalcium Lactate/Citrateinulin SystemWheat FlourHydration Propertieshttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2The aim of this work was to study the effect of calcium acid salts–inulin systems on hydration and thermal properties of wheat flour dough. Wheat flour was enriched with calcium lactate (CaLa2) or calcium citrate (Ca3Ci2) (1080–2520 ppm Ca) and inulin (In) (1%–13%, w/w flour basis). Water absorption (Wabs), moisture content (Mcont), water activity (aw) and relaxation time (λ) of dough were analyzed. Pasting properties during heating–cooling process were studied: peak viscosity (PV), breakdown (BD), final viscosity (FV) and setback 1(SB1) were determined. Temperatures (TpI, TpII) and enthalpy (ΔHgel) of gelatinization of dough were analyzed by DSC. Samples with Ca and In presented lower Wabs than control sample with an In2 dependence, with slight difference between both surface responses. More time for dough development (td) was necessary with Ca3Ci2 than with CaLa2, being td independent of calcium content at In level (≥6.5%). Dough with Ca3Ci2 was more stable with less degree of softening than CaLa2-dough, due to the protein stabilizing effect of citrate ion (Hofmeister series) with a maximum at 6.5% In. Mcont and λ decreased with the increase of In, independently of calcium. Hydration properties directly influenced pasting parameters. The increase in In content decreased viscosity (PV, FV) without affecting BD. SB1 behavior suggests the formation of pastes with low and high stability with CaLa2 and Ca3Ci2, respectively. Gelatinization degree decreased (40%) and retarded (ΔT=10 °C) at high levels of both ingredients. CaLa2 had more influence in hydration and thermal properties of wheat flour–inulin blends, enhancing a high degree of inhibition of gelatinization and leading to pastes with low viscosity after cooling. This behavior was influenced by the presence of inulin.Fil: Salinas, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones En Criotecnología de Alimentos (i); ArgentinaFil: Puppo, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones En Criotecnología de Alimentos (i); Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; ArgentinaElsevier Science2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/10261Salinas, Maria Victoria; Puppo, Maria Cecilia; Effect of organic calcium salts–inulin systems on hydration and thermal properties of wheat flour; Elsevier Science; Food Research International; 50; 1; 1-2013; 298-3060963-9969enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodres.2012.10.036info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0963996912004474info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:43Zoai:ri.conicet.gov.ar:11336/10261instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:43.858CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effect of organic calcium salts–inulin systems on hydration and thermal properties of wheat flour
title Effect of organic calcium salts–inulin systems on hydration and thermal properties of wheat flour
spellingShingle Effect of organic calcium salts–inulin systems on hydration and thermal properties of wheat flour
Salinas, Maria Victoria
Calcium Lactate/Citrateinulin System
Wheat Flour
Hydration Properties
title_short Effect of organic calcium salts–inulin systems on hydration and thermal properties of wheat flour
title_full Effect of organic calcium salts–inulin systems on hydration and thermal properties of wheat flour
title_fullStr Effect of organic calcium salts–inulin systems on hydration and thermal properties of wheat flour
title_full_unstemmed Effect of organic calcium salts–inulin systems on hydration and thermal properties of wheat flour
title_sort Effect of organic calcium salts–inulin systems on hydration and thermal properties of wheat flour
dc.creator.none.fl_str_mv Salinas, Maria Victoria
Puppo, Maria Cecilia
author Salinas, Maria Victoria
author_facet Salinas, Maria Victoria
Puppo, Maria Cecilia
author_role author
author2 Puppo, Maria Cecilia
author2_role author
dc.subject.none.fl_str_mv Calcium Lactate/Citrateinulin System
Wheat Flour
Hydration Properties
topic Calcium Lactate/Citrateinulin System
Wheat Flour
Hydration Properties
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The aim of this work was to study the effect of calcium acid salts–inulin systems on hydration and thermal properties of wheat flour dough. Wheat flour was enriched with calcium lactate (CaLa2) or calcium citrate (Ca3Ci2) (1080–2520 ppm Ca) and inulin (In) (1%–13%, w/w flour basis). Water absorption (Wabs), moisture content (Mcont), water activity (aw) and relaxation time (λ) of dough were analyzed. Pasting properties during heating–cooling process were studied: peak viscosity (PV), breakdown (BD), final viscosity (FV) and setback 1(SB1) were determined. Temperatures (TpI, TpII) and enthalpy (ΔHgel) of gelatinization of dough were analyzed by DSC. Samples with Ca and In presented lower Wabs than control sample with an In2 dependence, with slight difference between both surface responses. More time for dough development (td) was necessary with Ca3Ci2 than with CaLa2, being td independent of calcium content at In level (≥6.5%). Dough with Ca3Ci2 was more stable with less degree of softening than CaLa2-dough, due to the protein stabilizing effect of citrate ion (Hofmeister series) with a maximum at 6.5% In. Mcont and λ decreased with the increase of In, independently of calcium. Hydration properties directly influenced pasting parameters. The increase in In content decreased viscosity (PV, FV) without affecting BD. SB1 behavior suggests the formation of pastes with low and high stability with CaLa2 and Ca3Ci2, respectively. Gelatinization degree decreased (40%) and retarded (ΔT=10 °C) at high levels of both ingredients. CaLa2 had more influence in hydration and thermal properties of wheat flour–inulin blends, enhancing a high degree of inhibition of gelatinization and leading to pastes with low viscosity after cooling. This behavior was influenced by the presence of inulin.
Fil: Salinas, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones En Criotecnología de Alimentos (i); Argentina
Fil: Puppo, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones En Criotecnología de Alimentos (i); Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; Argentina
description The aim of this work was to study the effect of calcium acid salts–inulin systems on hydration and thermal properties of wheat flour dough. Wheat flour was enriched with calcium lactate (CaLa2) or calcium citrate (Ca3Ci2) (1080–2520 ppm Ca) and inulin (In) (1%–13%, w/w flour basis). Water absorption (Wabs), moisture content (Mcont), water activity (aw) and relaxation time (λ) of dough were analyzed. Pasting properties during heating–cooling process were studied: peak viscosity (PV), breakdown (BD), final viscosity (FV) and setback 1(SB1) were determined. Temperatures (TpI, TpII) and enthalpy (ΔHgel) of gelatinization of dough were analyzed by DSC. Samples with Ca and In presented lower Wabs than control sample with an In2 dependence, with slight difference between both surface responses. More time for dough development (td) was necessary with Ca3Ci2 than with CaLa2, being td independent of calcium content at In level (≥6.5%). Dough with Ca3Ci2 was more stable with less degree of softening than CaLa2-dough, due to the protein stabilizing effect of citrate ion (Hofmeister series) with a maximum at 6.5% In. Mcont and λ decreased with the increase of In, independently of calcium. Hydration properties directly influenced pasting parameters. The increase in In content decreased viscosity (PV, FV) without affecting BD. SB1 behavior suggests the formation of pastes with low and high stability with CaLa2 and Ca3Ci2, respectively. Gelatinization degree decreased (40%) and retarded (ΔT=10 °C) at high levels of both ingredients. CaLa2 had more influence in hydration and thermal properties of wheat flour–inulin blends, enhancing a high degree of inhibition of gelatinization and leading to pastes with low viscosity after cooling. This behavior was influenced by the presence of inulin.
publishDate 2013
dc.date.none.fl_str_mv 2013-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/10261
Salinas, Maria Victoria; Puppo, Maria Cecilia; Effect of organic calcium salts–inulin systems on hydration and thermal properties of wheat flour; Elsevier Science; Food Research International; 50; 1; 1-2013; 298-306
0963-9969
url http://hdl.handle.net/11336/10261
identifier_str_mv Salinas, Maria Victoria; Puppo, Maria Cecilia; Effect of organic calcium salts–inulin systems on hydration and thermal properties of wheat flour; Elsevier Science; Food Research International; 50; 1; 1-2013; 298-306
0963-9969
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.foodres.2012.10.036
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0963996912004474
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613153656143872
score 13.070432