Activity of order n in continuous systems
- Autores
- Castro, Rodrigo Daniel; Kofman, Ernesto Javier
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we generalize the concept of activity of continuous time signals. We define the activity of order n of a signal and show that it allows us to estimate the number of sections of polynomials up to order n which are needed to represent that signal with a certain accuracy. Then we apply this concept to obtain a lower bound for the number of steps performed by quantization-based integration algorithms in the simulation of ordinary differential equations. We perform an exhaustive analysis over two examples, computing the activity of order n and comparing it with the number of steps performed by different integration methods. This analysis corroborates the theoretical predictions and also allows us to measure the suitability of the different algorithms depending on how close to the theoretical lower bound they perform.
Fil: Castro, Rodrigo Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Materia
-
Devs
Numerical Methods
Continuous Systems
Simulation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33124
Ver los metadatos del registro completo
| id |
CONICETDig_862f12b7d08a67307338dcd371cde0d2 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33124 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Activity of order n in continuous systemsCastro, Rodrigo DanielKofman, Ernesto JavierDevsNumerical MethodsContinuous SystemsSimulationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this work we generalize the concept of activity of continuous time signals. We define the activity of order n of a signal and show that it allows us to estimate the number of sections of polynomials up to order n which are needed to represent that signal with a certain accuracy. Then we apply this concept to obtain a lower bound for the number of steps performed by quantization-based integration algorithms in the simulation of ordinary differential equations. We perform an exhaustive analysis over two examples, computing the activity of order n and comparing it with the number of steps performed by different integration methods. This analysis corroborates the theoretical predictions and also allows us to measure the suitability of the different algorithms depending on how close to the theoretical lower bound they perform.Fil: Castro, Rodrigo Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaSage Publications2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33124Castro, Rodrigo Daniel; Kofman, Ernesto Javier; Activity of order n in continuous systems ; Sage Publications; Simulation; 91; 4; 4-2015; 337-3480037-5497CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1177/0037549715577124info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/abs/10.1177/0037549715577124info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:44:54Zoai:ri.conicet.gov.ar:11336/33124instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:44:54.742CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Activity of order n in continuous systems |
| title |
Activity of order n in continuous systems |
| spellingShingle |
Activity of order n in continuous systems Castro, Rodrigo Daniel Devs Numerical Methods Continuous Systems Simulation |
| title_short |
Activity of order n in continuous systems |
| title_full |
Activity of order n in continuous systems |
| title_fullStr |
Activity of order n in continuous systems |
| title_full_unstemmed |
Activity of order n in continuous systems |
| title_sort |
Activity of order n in continuous systems |
| dc.creator.none.fl_str_mv |
Castro, Rodrigo Daniel Kofman, Ernesto Javier |
| author |
Castro, Rodrigo Daniel |
| author_facet |
Castro, Rodrigo Daniel Kofman, Ernesto Javier |
| author_role |
author |
| author2 |
Kofman, Ernesto Javier |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Devs Numerical Methods Continuous Systems Simulation |
| topic |
Devs Numerical Methods Continuous Systems Simulation |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this work we generalize the concept of activity of continuous time signals. We define the activity of order n of a signal and show that it allows us to estimate the number of sections of polynomials up to order n which are needed to represent that signal with a certain accuracy. Then we apply this concept to obtain a lower bound for the number of steps performed by quantization-based integration algorithms in the simulation of ordinary differential equations. We perform an exhaustive analysis over two examples, computing the activity of order n and comparing it with the number of steps performed by different integration methods. This analysis corroborates the theoretical predictions and also allows us to measure the suitability of the different algorithms depending on how close to the theoretical lower bound they perform. Fil: Castro, Rodrigo Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
| description |
In this work we generalize the concept of activity of continuous time signals. We define the activity of order n of a signal and show that it allows us to estimate the number of sections of polynomials up to order n which are needed to represent that signal with a certain accuracy. Then we apply this concept to obtain a lower bound for the number of steps performed by quantization-based integration algorithms in the simulation of ordinary differential equations. We perform an exhaustive analysis over two examples, computing the activity of order n and comparing it with the number of steps performed by different integration methods. This analysis corroborates the theoretical predictions and also allows us to measure the suitability of the different algorithms depending on how close to the theoretical lower bound they perform. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33124 Castro, Rodrigo Daniel; Kofman, Ernesto Javier; Activity of order n in continuous systems ; Sage Publications; Simulation; 91; 4; 4-2015; 337-348 0037-5497 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/33124 |
| identifier_str_mv |
Castro, Rodrigo Daniel; Kofman, Ernesto Javier; Activity of order n in continuous systems ; Sage Publications; Simulation; 91; 4; 4-2015; 337-348 0037-5497 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1177/0037549715577124 info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/abs/10.1177/0037549715577124 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Sage Publications |
| publisher.none.fl_str_mv |
Sage Publications |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597795213148160 |
| score |
12.976206 |