Activity of order n in continuous systems

Autores
Castro, Rodrigo Daniel; Kofman, Ernesto Javier
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we generalize the concept of activity of continuous time signals. We define the activity of order n of a signal and show that it allows us to estimate the number of sections of polynomials up to order n which are needed to represent that signal with a certain accuracy. Then we apply this concept to obtain a lower bound for the number of steps performed by quantization-based integration algorithms in the simulation of ordinary differential equations. We perform an exhaustive analysis over two examples, computing the activity of order n and comparing it with the number of steps performed by different integration methods. This analysis corroborates the theoretical predictions and also allows us to measure the suitability of the different algorithms depending on how close to the theoretical lower bound they perform.
Fil: Castro, Rodrigo Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Materia
Devs
Numerical Methods
Continuous Systems
Simulation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33124

id CONICETDig_862f12b7d08a67307338dcd371cde0d2
oai_identifier_str oai:ri.conicet.gov.ar:11336/33124
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Activity of order n in continuous systemsCastro, Rodrigo DanielKofman, Ernesto JavierDevsNumerical MethodsContinuous SystemsSimulationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this work we generalize the concept of activity of continuous time signals. We define the activity of order n of a signal and show that it allows us to estimate the number of sections of polynomials up to order n which are needed to represent that signal with a certain accuracy. Then we apply this concept to obtain a lower bound for the number of steps performed by quantization-based integration algorithms in the simulation of ordinary differential equations. We perform an exhaustive analysis over two examples, computing the activity of order n and comparing it with the number of steps performed by different integration methods. This analysis corroborates the theoretical predictions and also allows us to measure the suitability of the different algorithms depending on how close to the theoretical lower bound they perform.Fil: Castro, Rodrigo Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaSage Publications2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33124Castro, Rodrigo Daniel; Kofman, Ernesto Javier; Activity of order n in continuous systems ; Sage Publications; Simulation; 91; 4; 4-2015; 337-3480037-5497CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1177/0037549715577124info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/abs/10.1177/0037549715577124info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:44:54Zoai:ri.conicet.gov.ar:11336/33124instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:44:54.742CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Activity of order n in continuous systems
title Activity of order n in continuous systems
spellingShingle Activity of order n in continuous systems
Castro, Rodrigo Daniel
Devs
Numerical Methods
Continuous Systems
Simulation
title_short Activity of order n in continuous systems
title_full Activity of order n in continuous systems
title_fullStr Activity of order n in continuous systems
title_full_unstemmed Activity of order n in continuous systems
title_sort Activity of order n in continuous systems
dc.creator.none.fl_str_mv Castro, Rodrigo Daniel
Kofman, Ernesto Javier
author Castro, Rodrigo Daniel
author_facet Castro, Rodrigo Daniel
Kofman, Ernesto Javier
author_role author
author2 Kofman, Ernesto Javier
author2_role author
dc.subject.none.fl_str_mv Devs
Numerical Methods
Continuous Systems
Simulation
topic Devs
Numerical Methods
Continuous Systems
Simulation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we generalize the concept of activity of continuous time signals. We define the activity of order n of a signal and show that it allows us to estimate the number of sections of polynomials up to order n which are needed to represent that signal with a certain accuracy. Then we apply this concept to obtain a lower bound for the number of steps performed by quantization-based integration algorithms in the simulation of ordinary differential equations. We perform an exhaustive analysis over two examples, computing the activity of order n and comparing it with the number of steps performed by different integration methods. This analysis corroborates the theoretical predictions and also allows us to measure the suitability of the different algorithms depending on how close to the theoretical lower bound they perform.
Fil: Castro, Rodrigo Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
description In this work we generalize the concept of activity of continuous time signals. We define the activity of order n of a signal and show that it allows us to estimate the number of sections of polynomials up to order n which are needed to represent that signal with a certain accuracy. Then we apply this concept to obtain a lower bound for the number of steps performed by quantization-based integration algorithms in the simulation of ordinary differential equations. We perform an exhaustive analysis over two examples, computing the activity of order n and comparing it with the number of steps performed by different integration methods. This analysis corroborates the theoretical predictions and also allows us to measure the suitability of the different algorithms depending on how close to the theoretical lower bound they perform.
publishDate 2015
dc.date.none.fl_str_mv 2015-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33124
Castro, Rodrigo Daniel; Kofman, Ernesto Javier; Activity of order n in continuous systems ; Sage Publications; Simulation; 91; 4; 4-2015; 337-348
0037-5497
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33124
identifier_str_mv Castro, Rodrigo Daniel; Kofman, Ernesto Javier; Activity of order n in continuous systems ; Sage Publications; Simulation; 91; 4; 4-2015; 337-348
0037-5497
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1177/0037549715577124
info:eu-repo/semantics/altIdentifier/url/http://journals.sagepub.com/doi/abs/10.1177/0037549715577124
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Sage Publications
publisher.none.fl_str_mv Sage Publications
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848597795213148160
score 12.976206