Application of State Quantization-Based Methods in HEP Particle Transport Simulation

Autores
Santi, Lucio Emilio; Ponieman, Nicolás; Jun, Soon Yung; Genser, Krzysztof; Elvira, Daniel; Castro, Rodrigo Daniel
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Simulation of particle-matter interactions in complex geometries is one of the main tasks in high energy physics (HEP) research. An essential aspect of it is an accurate and efficient particle transportation in a non-uniform magnetic field, which includes the handling of volume crossings within a predefined 3D geometry. Quantized State Systems (QSS) is a family of numerical methods that provides attractive features for particle transportation processes, such as dense output (sequences of polynomial segments changing only according to accuracy-driven discrete events) and lightweight detection and handling of volume crossings (based on simple root-finding of polynomial functions). In this work we present a proof-of-concept performance comparison between a QSS-based standalone numerical solver and an application based on the Geant4 simulation toolkit, with its default Runge-Kutta based adaptive step method. In a case study with a charged particle circulating in a vacuum (with interactions with matter turned off), in a uniform magnetic field, and crossing up to 200 volume boundaries twice per turn, simulation results showed speedups of up to 6 times in favor of QSS while it being 10 times slower in the case with zero volume boundaries.
Fil: Santi, Lucio Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación En Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación En Ciencias de la Computacion; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Ponieman, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Jun, Soon Yung. Fermi National Accelerator Laboratory; Estados Unidos
Fil: Genser, Krzysztof. Fermi National Accelerator Laboratory; Estados Unidos
Fil: Elvira, Daniel. Fermi National Accelerator Laboratory; Estados Unidos
Fil: Castro, Rodrigo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación En Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación En Ciencias de la Computacion; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Materia
Simulation
Qss
Devs
Hep
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/66855

id CONICETDig_04cd14bebe3e0e933a3232ca04d8b201
oai_identifier_str oai:ri.conicet.gov.ar:11336/66855
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Application of State Quantization-Based Methods in HEP Particle Transport SimulationSanti, Lucio EmilioPonieman, NicolásJun, Soon YungGenser, KrzysztofElvira, DanielCastro, Rodrigo DanielSimulationQssDevsHephttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Simulation of particle-matter interactions in complex geometries is one of the main tasks in high energy physics (HEP) research. An essential aspect of it is an accurate and efficient particle transportation in a non-uniform magnetic field, which includes the handling of volume crossings within a predefined 3D geometry. Quantized State Systems (QSS) is a family of numerical methods that provides attractive features for particle transportation processes, such as dense output (sequences of polynomial segments changing only according to accuracy-driven discrete events) and lightweight detection and handling of volume crossings (based on simple root-finding of polynomial functions). In this work we present a proof-of-concept performance comparison between a QSS-based standalone numerical solver and an application based on the Geant4 simulation toolkit, with its default Runge-Kutta based adaptive step method. In a case study with a charged particle circulating in a vacuum (with interactions with matter turned off), in a uniform magnetic field, and crossing up to 200 volume boundaries twice per turn, simulation results showed speedups of up to 6 times in favor of QSS while it being 10 times slower in the case with zero volume boundaries.Fil: Santi, Lucio Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación En Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación En Ciencias de la Computacion; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Ponieman, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Jun, Soon Yung. Fermi National Accelerator Laboratory; Estados UnidosFil: Genser, Krzysztof. Fermi National Accelerator Laboratory; Estados UnidosFil: Elvira, Daniel. Fermi National Accelerator Laboratory; Estados UnidosFil: Castro, Rodrigo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación En Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación En Ciencias de la Computacion; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaInstitute of Physics Publishing2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/66855Santi, Lucio Emilio; Ponieman, Nicolás; Jun, Soon Yung; Genser, Krzysztof; Elvira, Daniel; et al.; Application of State Quantization-Based Methods in HEP Particle Transport Simulation; Institute of Physics Publishing; Journal of Physics: Conference Series; 898; 4; 11-2017; 42-491742-6596CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1742-6596/898/4/042049info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-6596/898/4/042049info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:47Zoai:ri.conicet.gov.ar:11336/66855instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:48.049CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Application of State Quantization-Based Methods in HEP Particle Transport Simulation
title Application of State Quantization-Based Methods in HEP Particle Transport Simulation
spellingShingle Application of State Quantization-Based Methods in HEP Particle Transport Simulation
Santi, Lucio Emilio
Simulation
Qss
Devs
Hep
title_short Application of State Quantization-Based Methods in HEP Particle Transport Simulation
title_full Application of State Quantization-Based Methods in HEP Particle Transport Simulation
title_fullStr Application of State Quantization-Based Methods in HEP Particle Transport Simulation
title_full_unstemmed Application of State Quantization-Based Methods in HEP Particle Transport Simulation
title_sort Application of State Quantization-Based Methods in HEP Particle Transport Simulation
dc.creator.none.fl_str_mv Santi, Lucio Emilio
Ponieman, Nicolás
Jun, Soon Yung
Genser, Krzysztof
Elvira, Daniel
Castro, Rodrigo Daniel
author Santi, Lucio Emilio
author_facet Santi, Lucio Emilio
Ponieman, Nicolás
Jun, Soon Yung
Genser, Krzysztof
Elvira, Daniel
Castro, Rodrigo Daniel
author_role author
author2 Ponieman, Nicolás
Jun, Soon Yung
Genser, Krzysztof
Elvira, Daniel
Castro, Rodrigo Daniel
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Simulation
Qss
Devs
Hep
topic Simulation
Qss
Devs
Hep
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Simulation of particle-matter interactions in complex geometries is one of the main tasks in high energy physics (HEP) research. An essential aspect of it is an accurate and efficient particle transportation in a non-uniform magnetic field, which includes the handling of volume crossings within a predefined 3D geometry. Quantized State Systems (QSS) is a family of numerical methods that provides attractive features for particle transportation processes, such as dense output (sequences of polynomial segments changing only according to accuracy-driven discrete events) and lightweight detection and handling of volume crossings (based on simple root-finding of polynomial functions). In this work we present a proof-of-concept performance comparison between a QSS-based standalone numerical solver and an application based on the Geant4 simulation toolkit, with its default Runge-Kutta based adaptive step method. In a case study with a charged particle circulating in a vacuum (with interactions with matter turned off), in a uniform magnetic field, and crossing up to 200 volume boundaries twice per turn, simulation results showed speedups of up to 6 times in favor of QSS while it being 10 times slower in the case with zero volume boundaries.
Fil: Santi, Lucio Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación En Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación En Ciencias de la Computacion; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Ponieman, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Jun, Soon Yung. Fermi National Accelerator Laboratory; Estados Unidos
Fil: Genser, Krzysztof. Fermi National Accelerator Laboratory; Estados Unidos
Fil: Elvira, Daniel. Fermi National Accelerator Laboratory; Estados Unidos
Fil: Castro, Rodrigo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación En Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación En Ciencias de la Computacion; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
description Simulation of particle-matter interactions in complex geometries is one of the main tasks in high energy physics (HEP) research. An essential aspect of it is an accurate and efficient particle transportation in a non-uniform magnetic field, which includes the handling of volume crossings within a predefined 3D geometry. Quantized State Systems (QSS) is a family of numerical methods that provides attractive features for particle transportation processes, such as dense output (sequences of polynomial segments changing only according to accuracy-driven discrete events) and lightweight detection and handling of volume crossings (based on simple root-finding of polynomial functions). In this work we present a proof-of-concept performance comparison between a QSS-based standalone numerical solver and an application based on the Geant4 simulation toolkit, with its default Runge-Kutta based adaptive step method. In a case study with a charged particle circulating in a vacuum (with interactions with matter turned off), in a uniform magnetic field, and crossing up to 200 volume boundaries twice per turn, simulation results showed speedups of up to 6 times in favor of QSS while it being 10 times slower in the case with zero volume boundaries.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/66855
Santi, Lucio Emilio; Ponieman, Nicolás; Jun, Soon Yung; Genser, Krzysztof; Elvira, Daniel; et al.; Application of State Quantization-Based Methods in HEP Particle Transport Simulation; Institute of Physics Publishing; Journal of Physics: Conference Series; 898; 4; 11-2017; 42-49
1742-6596
CONICET Digital
CONICET
url http://hdl.handle.net/11336/66855
identifier_str_mv Santi, Lucio Emilio; Ponieman, Nicolás; Jun, Soon Yung; Genser, Krzysztof; Elvira, Daniel; et al.; Application of State Quantization-Based Methods in HEP Particle Transport Simulation; Institute of Physics Publishing; Journal of Physics: Conference Series; 898; 4; 11-2017; 42-49
1742-6596
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-6596/898/4/042049
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-6596/898/4/042049
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Physics Publishing
publisher.none.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270132550762496
score 13.13397