Reconocimiento de Estados Afectivos a partir de Señales Biomédicas
- Autores
- Bugnon, Leandro Ariel
- Año de publicación
- 2018
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión publicada
- Colaborador/a o director/a de tesis
- Milone, Diego Humberto
Calvo, Rafael - Descripción
- Las emociones constituyen una parte fundamental de los individuos, influyendo en sucomunicación diaria, la toma de decisiones y el foco de atención. La incorporación de las emociones en la tecnología ha avanzado en losúltimos años, desde estudios exploratorios en la respuesta a los estímulos, a aplicaciones comerciales en interfaces hombre-máquina. Una de las fuentes paraidentificar estados emocionales es la respuesta fisiológica, registrada medianteseñales biomédicas. El uso de estas señales permitiría el desarrollo de dispositivos poco invasivos, como por ejemplo una pulsera, que puedan registrarseñales continuamente, en diferentes condiciones, y manteniendo la privacidad delos usuarios. Existen numerosos enfoques para el reconocimiento de afectos, condiferentes señales, técnicas de procesamiento de la señal y métodos deaprendizaje automático. Entre ellos, la combinación demúltiples señales se utilizó ampliamente para mejorar las tasas de reconocimiento,pero resulta inviable en la práctica por su invasividad. Los desafíosactuales requieren clasificadores que puedan funcionar en tiempo real, enaplicaciones interactivas, y con mayor comodidad para el usuario. En esta tesis doctoral se aborda el desafío del reconocimiento de estadosafectivos en varios aspectos. Se revisan las propiedades de cada señalfisiológica en términos de su practicidad y potencial. Se propone un método paraadaptar un clasificador a nuevos usuarios, estimando parámetros fisiológicosbasales. Luego se presentan dos métodos originales paramejorar las tasas de reconocimiento. El primero es un método supervisado basadoen mapas auto-organizativos (sSOM). Este método permite representar los espacios de características fisiológicas ymodelos emocionales, para analizar las relaciones en los datos. El otro estabasado en máquinas de aprendizaje extremo (ELM),una novedosa familia de redes neuronales artificiales que tiene gran poder degeneralización y puede entrenarse con pocos datos. Los métodos fueron evaluados y comparados con los del estadodel arte, en corpus realistas y de acceso libre. Los resultados obtenidos muestran avances en relación al estado del arte para el problema. Elmétodo de adaptación permite, a partir de pocos segundos,mejorar las tasas de reconocimiento en tiempo real, aproximando los resultados delreconocimiento que se podría hacer con posterioridad, sobre los registros completos. Utilizando una única señal de actividad cardiovascular, en particularla variabilidad del ritmo cardíaco (HRV), se lograron avances prometedores, con diferencias significativasen relación a los resultados obtenidos por los métodos del estado del arte. LasELM obtuvieron excelentes resultados y con bajo costo computacional, por lo queserían útiles para aplicaciones móviles. El sSOMlogra resultados similares, con la ventaja de proveer a la vez una herramientapara representar y analizar los espacios complejos de la fisiología y lasemociones, en una forma compacta.
Fil: Bugnon, Leandro Ariel. Universidad Nacional del Litoral; Argentina - Materia
-
RECONOCIMIENTO DE EMOCIONES
INTERFACES HOMBRE-MÀQUINA
PROCESAMIENTO DE SEÑALES BIOMÉDICAS
METODOS AUTO-ORGANIZATIVOS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87980
Ver los metadatos del registro completo
id |
CONICETDig_84facf3ef3cd95124c7468a1985d39c6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87980 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Reconocimiento de Estados Afectivos a partir de Señales BiomédicasBugnon, Leandro ArielRECONOCIMIENTO DE EMOCIONESINTERFACES HOMBRE-MÀQUINAPROCESAMIENTO DE SEÑALES BIOMÉDICASMETODOS AUTO-ORGANIZATIVOShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Las emociones constituyen una parte fundamental de los individuos, influyendo en sucomunicación diaria, la toma de decisiones y el foco de atención. La incorporación de las emociones en la tecnología ha avanzado en losúltimos años, desde estudios exploratorios en la respuesta a los estímulos, a aplicaciones comerciales en interfaces hombre-máquina. Una de las fuentes paraidentificar estados emocionales es la respuesta fisiológica, registrada medianteseñales biomédicas. El uso de estas señales permitiría el desarrollo de dispositivos poco invasivos, como por ejemplo una pulsera, que puedan registrarseñales continuamente, en diferentes condiciones, y manteniendo la privacidad delos usuarios. Existen numerosos enfoques para el reconocimiento de afectos, condiferentes señales, técnicas de procesamiento de la señal y métodos deaprendizaje automático. Entre ellos, la combinación demúltiples señales se utilizó ampliamente para mejorar las tasas de reconocimiento,pero resulta inviable en la práctica por su invasividad. Los desafíosactuales requieren clasificadores que puedan funcionar en tiempo real, enaplicaciones interactivas, y con mayor comodidad para el usuario. En esta tesis doctoral se aborda el desafío del reconocimiento de estadosafectivos en varios aspectos. Se revisan las propiedades de cada señalfisiológica en términos de su practicidad y potencial. Se propone un método paraadaptar un clasificador a nuevos usuarios, estimando parámetros fisiológicosbasales. Luego se presentan dos métodos originales paramejorar las tasas de reconocimiento. El primero es un método supervisado basadoen mapas auto-organizativos (sSOM). Este método permite representar los espacios de características fisiológicas ymodelos emocionales, para analizar las relaciones en los datos. El otro estabasado en máquinas de aprendizaje extremo (ELM),una novedosa familia de redes neuronales artificiales que tiene gran poder degeneralización y puede entrenarse con pocos datos. Los métodos fueron evaluados y comparados con los del estadodel arte, en corpus realistas y de acceso libre. Los resultados obtenidos muestran avances en relación al estado del arte para el problema. Elmétodo de adaptación permite, a partir de pocos segundos,mejorar las tasas de reconocimiento en tiempo real, aproximando los resultados delreconocimiento que se podría hacer con posterioridad, sobre los registros completos. Utilizando una única señal de actividad cardiovascular, en particularla variabilidad del ritmo cardíaco (HRV), se lograron avances prometedores, con diferencias significativasen relación a los resultados obtenidos por los métodos del estado del arte. LasELM obtuvieron excelentes resultados y con bajo costo computacional, por lo queserían útiles para aplicaciones móviles. El sSOMlogra resultados similares, con la ventaja de proveer a la vez una herramientapara representar y analizar los espacios complejos de la fisiología y lasemociones, en una forma compacta.Fil: Bugnon, Leandro Ariel. Universidad Nacional del Litoral; ArgentinaMilone, Diego HumbertoCalvo, Rafael2018-01-01info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87980Bugnon, Leandro Ariel; Milone, Diego Humberto; Calvo, Rafael; Reconocimiento de Estados Afectivos a partir de Señales Biomédicas; 1-1-2018CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://hdl.handle.net/11185/1116info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:06:30Zoai:ri.conicet.gov.ar:11336/87980instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:06:30.735CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Reconocimiento de Estados Afectivos a partir de Señales Biomédicas |
title |
Reconocimiento de Estados Afectivos a partir de Señales Biomédicas |
spellingShingle |
Reconocimiento de Estados Afectivos a partir de Señales Biomédicas Bugnon, Leandro Ariel RECONOCIMIENTO DE EMOCIONES INTERFACES HOMBRE-MÀQUINA PROCESAMIENTO DE SEÑALES BIOMÉDICAS METODOS AUTO-ORGANIZATIVOS |
title_short |
Reconocimiento de Estados Afectivos a partir de Señales Biomédicas |
title_full |
Reconocimiento de Estados Afectivos a partir de Señales Biomédicas |
title_fullStr |
Reconocimiento de Estados Afectivos a partir de Señales Biomédicas |
title_full_unstemmed |
Reconocimiento de Estados Afectivos a partir de Señales Biomédicas |
title_sort |
Reconocimiento de Estados Afectivos a partir de Señales Biomédicas |
dc.creator.none.fl_str_mv |
Bugnon, Leandro Ariel |
author |
Bugnon, Leandro Ariel |
author_facet |
Bugnon, Leandro Ariel |
author_role |
author |
dc.contributor.none.fl_str_mv |
Milone, Diego Humberto Calvo, Rafael |
dc.subject.none.fl_str_mv |
RECONOCIMIENTO DE EMOCIONES INTERFACES HOMBRE-MÀQUINA PROCESAMIENTO DE SEÑALES BIOMÉDICAS METODOS AUTO-ORGANIZATIVOS |
topic |
RECONOCIMIENTO DE EMOCIONES INTERFACES HOMBRE-MÀQUINA PROCESAMIENTO DE SEÑALES BIOMÉDICAS METODOS AUTO-ORGANIZATIVOS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Las emociones constituyen una parte fundamental de los individuos, influyendo en sucomunicación diaria, la toma de decisiones y el foco de atención. La incorporación de las emociones en la tecnología ha avanzado en losúltimos años, desde estudios exploratorios en la respuesta a los estímulos, a aplicaciones comerciales en interfaces hombre-máquina. Una de las fuentes paraidentificar estados emocionales es la respuesta fisiológica, registrada medianteseñales biomédicas. El uso de estas señales permitiría el desarrollo de dispositivos poco invasivos, como por ejemplo una pulsera, que puedan registrarseñales continuamente, en diferentes condiciones, y manteniendo la privacidad delos usuarios. Existen numerosos enfoques para el reconocimiento de afectos, condiferentes señales, técnicas de procesamiento de la señal y métodos deaprendizaje automático. Entre ellos, la combinación demúltiples señales se utilizó ampliamente para mejorar las tasas de reconocimiento,pero resulta inviable en la práctica por su invasividad. Los desafíosactuales requieren clasificadores que puedan funcionar en tiempo real, enaplicaciones interactivas, y con mayor comodidad para el usuario. En esta tesis doctoral se aborda el desafío del reconocimiento de estadosafectivos en varios aspectos. Se revisan las propiedades de cada señalfisiológica en términos de su practicidad y potencial. Se propone un método paraadaptar un clasificador a nuevos usuarios, estimando parámetros fisiológicosbasales. Luego se presentan dos métodos originales paramejorar las tasas de reconocimiento. El primero es un método supervisado basadoen mapas auto-organizativos (sSOM). Este método permite representar los espacios de características fisiológicas ymodelos emocionales, para analizar las relaciones en los datos. El otro estabasado en máquinas de aprendizaje extremo (ELM),una novedosa familia de redes neuronales artificiales que tiene gran poder degeneralización y puede entrenarse con pocos datos. Los métodos fueron evaluados y comparados con los del estadodel arte, en corpus realistas y de acceso libre. Los resultados obtenidos muestran avances en relación al estado del arte para el problema. Elmétodo de adaptación permite, a partir de pocos segundos,mejorar las tasas de reconocimiento en tiempo real, aproximando los resultados delreconocimiento que se podría hacer con posterioridad, sobre los registros completos. Utilizando una única señal de actividad cardiovascular, en particularla variabilidad del ritmo cardíaco (HRV), se lograron avances prometedores, con diferencias significativasen relación a los resultados obtenidos por los métodos del estado del arte. LasELM obtuvieron excelentes resultados y con bajo costo computacional, por lo queserían útiles para aplicaciones móviles. El sSOMlogra resultados similares, con la ventaja de proveer a la vez una herramientapara representar y analizar los espacios complejos de la fisiología y lasemociones, en una forma compacta. Fil: Bugnon, Leandro Ariel. Universidad Nacional del Litoral; Argentina |
description |
Las emociones constituyen una parte fundamental de los individuos, influyendo en sucomunicación diaria, la toma de decisiones y el foco de atención. La incorporación de las emociones en la tecnología ha avanzado en losúltimos años, desde estudios exploratorios en la respuesta a los estímulos, a aplicaciones comerciales en interfaces hombre-máquina. Una de las fuentes paraidentificar estados emocionales es la respuesta fisiológica, registrada medianteseñales biomédicas. El uso de estas señales permitiría el desarrollo de dispositivos poco invasivos, como por ejemplo una pulsera, que puedan registrarseñales continuamente, en diferentes condiciones, y manteniendo la privacidad delos usuarios. Existen numerosos enfoques para el reconocimiento de afectos, condiferentes señales, técnicas de procesamiento de la señal y métodos deaprendizaje automático. Entre ellos, la combinación demúltiples señales se utilizó ampliamente para mejorar las tasas de reconocimiento,pero resulta inviable en la práctica por su invasividad. Los desafíosactuales requieren clasificadores que puedan funcionar en tiempo real, enaplicaciones interactivas, y con mayor comodidad para el usuario. En esta tesis doctoral se aborda el desafío del reconocimiento de estadosafectivos en varios aspectos. Se revisan las propiedades de cada señalfisiológica en términos de su practicidad y potencial. Se propone un método paraadaptar un clasificador a nuevos usuarios, estimando parámetros fisiológicosbasales. Luego se presentan dos métodos originales paramejorar las tasas de reconocimiento. El primero es un método supervisado basadoen mapas auto-organizativos (sSOM). Este método permite representar los espacios de características fisiológicas ymodelos emocionales, para analizar las relaciones en los datos. El otro estabasado en máquinas de aprendizaje extremo (ELM),una novedosa familia de redes neuronales artificiales que tiene gran poder degeneralización y puede entrenarse con pocos datos. Los métodos fueron evaluados y comparados con los del estadodel arte, en corpus realistas y de acceso libre. Los resultados obtenidos muestran avances en relación al estado del arte para el problema. Elmétodo de adaptación permite, a partir de pocos segundos,mejorar las tasas de reconocimiento en tiempo real, aproximando los resultados delreconocimiento que se podría hacer con posterioridad, sobre los registros completos. Utilizando una única señal de actividad cardiovascular, en particularla variabilidad del ritmo cardíaco (HRV), se lograron avances prometedores, con diferencias significativasen relación a los resultados obtenidos por los métodos del estado del arte. LasELM obtuvieron excelentes resultados y con bajo costo computacional, por lo queserían útiles para aplicaciones móviles. El sSOMlogra resultados similares, con la ventaja de proveer a la vez una herramientapara representar y analizar los espacios complejos de la fisiología y lasemociones, en una forma compacta. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87980 Bugnon, Leandro Ariel; Milone, Diego Humberto; Calvo, Rafael; Reconocimiento de Estados Afectivos a partir de Señales Biomédicas; 1-1-2018 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87980 |
identifier_str_mv |
Bugnon, Leandro Ariel; Milone, Diego Humberto; Calvo, Rafael; Reconocimiento de Estados Afectivos a partir de Señales Biomédicas; 1-1-2018 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://hdl.handle.net/11185/1116 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083208558411776 |
score |
13.221938 |