Completeness in Hybrid Type Theory
- Autores
- Areces, Carlos Eduardo; Blackburn, Patrick; Huertas, Antonia; Manzano, Maria
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that basic hybridization (adding nominals and @ operators) makes it possible to give straightforward Henkin-style completeness proofs even when the modal logic being hybridized is higher-order. The key ideas are to add nominals as expressions of type t, and to extend to arbitrary types the way we interpret @i@i in propositional and first-order hybrid logic. This means: interpret @iαa@iαa , where αaαa is an expression of any type aa , as an expression of type aa that rigidly returns the value that αaαa receives at the i-world. The axiomatization and completeness proofs are generalizations of those found in propositional and first-order hybrid logic, and (as is usual inhybrid logic) we automatically obtain a wide range of completeness results for stronger logics and languages. Our approach is deliberately low-tech. We don’t, for example, make use of Montague’s intensional type s, or Fitting-style intensional models; we build, as simply as we can, hybrid logicover Henkin’s logic.
Fil: Areces, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; Argentina
Fil: Blackburn, Patrick. University of Roskilde. Roskilde; Dinamarca
Fil: Huertas, Antonia. Universitat Oberta de Catalunya; España
Fil: Manzano, Maria. Universidad de Salamanca; España - Materia
-
Hybrid Logic
Type Theory
Higher-Order Modal Logic
Nominals
@ Operators - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33948
Ver los metadatos del registro completo
| id |
CONICETDig_846712f1f5d20b56781b4d68dcafac48 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33948 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Completeness in Hybrid Type TheoryAreces, Carlos EduardoBlackburn, PatrickHuertas, AntoniaManzano, MariaHybrid LogicType TheoryHigher-Order Modal LogicNominals@ Operatorshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We show that basic hybridization (adding nominals and @ operators) makes it possible to give straightforward Henkin-style completeness proofs even when the modal logic being hybridized is higher-order. The key ideas are to add nominals as expressions of type t, and to extend to arbitrary types the way we interpret @i@i in propositional and first-order hybrid logic. This means: interpret @iαa@iαa , where αaαa is an expression of any type aa , as an expression of type aa that rigidly returns the value that αaαa receives at the i-world. The axiomatization and completeness proofs are generalizations of those found in propositional and first-order hybrid logic, and (as is usual inhybrid logic) we automatically obtain a wide range of completeness results for stronger logics and languages. Our approach is deliberately low-tech. We don’t, for example, make use of Montague’s intensional type s, or Fitting-style intensional models; we build, as simply as we can, hybrid logicover Henkin’s logic.Fil: Areces, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; ArgentinaFil: Blackburn, Patrick. University of Roskilde. Roskilde; DinamarcaFil: Huertas, Antonia. Universitat Oberta de Catalunya; EspañaFil: Manzano, Maria. Universidad de Salamanca; EspañaSpringer2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33948Areces, Carlos Eduardo; Blackburn, Patrick; Huertas, Antonia; Manzano, Maria; Completeness in Hybrid Type Theory; Springer; Journal of Philosophical Logic; 43; 2-3; 5-2014; 209-2380022-3611CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10992-012-9260-4info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10992-012-9260-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:27:53Zoai:ri.conicet.gov.ar:11336/33948instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:27:54.289CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Completeness in Hybrid Type Theory |
| title |
Completeness in Hybrid Type Theory |
| spellingShingle |
Completeness in Hybrid Type Theory Areces, Carlos Eduardo Hybrid Logic Type Theory Higher-Order Modal Logic Nominals @ Operators |
| title_short |
Completeness in Hybrid Type Theory |
| title_full |
Completeness in Hybrid Type Theory |
| title_fullStr |
Completeness in Hybrid Type Theory |
| title_full_unstemmed |
Completeness in Hybrid Type Theory |
| title_sort |
Completeness in Hybrid Type Theory |
| dc.creator.none.fl_str_mv |
Areces, Carlos Eduardo Blackburn, Patrick Huertas, Antonia Manzano, Maria |
| author |
Areces, Carlos Eduardo |
| author_facet |
Areces, Carlos Eduardo Blackburn, Patrick Huertas, Antonia Manzano, Maria |
| author_role |
author |
| author2 |
Blackburn, Patrick Huertas, Antonia Manzano, Maria |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Hybrid Logic Type Theory Higher-Order Modal Logic Nominals @ Operators |
| topic |
Hybrid Logic Type Theory Higher-Order Modal Logic Nominals @ Operators |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We show that basic hybridization (adding nominals and @ operators) makes it possible to give straightforward Henkin-style completeness proofs even when the modal logic being hybridized is higher-order. The key ideas are to add nominals as expressions of type t, and to extend to arbitrary types the way we interpret @i@i in propositional and first-order hybrid logic. This means: interpret @iαa@iαa , where αaαa is an expression of any type aa , as an expression of type aa that rigidly returns the value that αaαa receives at the i-world. The axiomatization and completeness proofs are generalizations of those found in propositional and first-order hybrid logic, and (as is usual inhybrid logic) we automatically obtain a wide range of completeness results for stronger logics and languages. Our approach is deliberately low-tech. We don’t, for example, make use of Montague’s intensional type s, or Fitting-style intensional models; we build, as simply as we can, hybrid logicover Henkin’s logic. Fil: Areces, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; Argentina Fil: Blackburn, Patrick. University of Roskilde. Roskilde; Dinamarca Fil: Huertas, Antonia. Universitat Oberta de Catalunya; España Fil: Manzano, Maria. Universidad de Salamanca; España |
| description |
We show that basic hybridization (adding nominals and @ operators) makes it possible to give straightforward Henkin-style completeness proofs even when the modal logic being hybridized is higher-order. The key ideas are to add nominals as expressions of type t, and to extend to arbitrary types the way we interpret @i@i in propositional and first-order hybrid logic. This means: interpret @iαa@iαa , where αaαa is an expression of any type aa , as an expression of type aa that rigidly returns the value that αaαa receives at the i-world. The axiomatization and completeness proofs are generalizations of those found in propositional and first-order hybrid logic, and (as is usual inhybrid logic) we automatically obtain a wide range of completeness results for stronger logics and languages. Our approach is deliberately low-tech. We don’t, for example, make use of Montague’s intensional type s, or Fitting-style intensional models; we build, as simply as we can, hybrid logicover Henkin’s logic. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33948 Areces, Carlos Eduardo; Blackburn, Patrick; Huertas, Antonia; Manzano, Maria; Completeness in Hybrid Type Theory; Springer; Journal of Philosophical Logic; 43; 2-3; 5-2014; 209-238 0022-3611 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/33948 |
| identifier_str_mv |
Areces, Carlos Eduardo; Blackburn, Patrick; Huertas, Antonia; Manzano, Maria; Completeness in Hybrid Type Theory; Springer; Journal of Philosophical Logic; 43; 2-3; 5-2014; 209-238 0022-3611 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10992-012-9260-4 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10992-012-9260-4 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781851583119360 |
| score |
12.982451 |