Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower
- Autores
- Moschen, Sebastián Nicolás; Higgins, Janet; Di Rienzo, Julio Alejandro; Heinz, Ruth Amelia; Paniego, Norma Beatriz; Fernández, Paula del Carmen
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In recent years, high throughput technologies have led to an increase of datasets from omics disciplines allowing the understanding of the complex regulatory networks associated with biological processes. Leaf senescence is a complex mechanism controlled by multiple genetic and environmental variables, which has a strong impact on crop yield. Transcription factors (TFs) are key proteins in the regulation of gene expression, regulating different signaling pathways; their function is crucial for triggering and/or regulating different aspects of the leaf senescence process. The study of TF interactions and their integration with metabolic profiles under different developmental conditions, especially for a non-model organism such as sunflower, will open new insights into the details of gene regulation of leaf senescence.
Fil: Moschen, Sebastián Nicolás. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Higgins, Janet. The Genome Analysis Centre; Reino Unido
Fil: Di Rienzo, Julio Alejandro. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina
Fil: Heinz, Ruth Amelia. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Paniego, Norma Beatriz. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Fernández, Paula del Carmen. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
BIOINFORMATICA
REDES GENICAS
GIRASOL
POSTGENÓMICA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/46809
Ver los metadatos del registro completo
id |
CONICETDig_845beed0c224d1294ee4b522f7f03d94 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/46809 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflowerMoschen, Sebastián NicolásHiggins, JanetDi Rienzo, Julio AlejandroHeinz, Ruth AmeliaPaniego, Norma BeatrizFernández, Paula del CarmenBIOINFORMATICAREDES GENICASGIRASOLPOSTGENÓMICAhttps://purl.org/becyt/ford/4.4https://purl.org/becyt/ford/4In recent years, high throughput technologies have led to an increase of datasets from omics disciplines allowing the understanding of the complex regulatory networks associated with biological processes. Leaf senescence is a complex mechanism controlled by multiple genetic and environmental variables, which has a strong impact on crop yield. Transcription factors (TFs) are key proteins in the regulation of gene expression, regulating different signaling pathways; their function is crucial for triggering and/or regulating different aspects of the leaf senescence process. The study of TF interactions and their integration with metabolic profiles under different developmental conditions, especially for a non-model organism such as sunflower, will open new insights into the details of gene regulation of leaf senescence.Fil: Moschen, Sebastián Nicolás. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Higgins, Janet. The Genome Analysis Centre; Reino UnidoFil: Di Rienzo, Julio Alejandro. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; ArgentinaFil: Heinz, Ruth Amelia. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Paniego, Norma Beatriz. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernández, Paula del Carmen. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaBioMed Central2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46809Moschen, Sebastián Nicolás; Higgins, Janet; Di Rienzo, Julio Alejandro; Heinz, Ruth Amelia; Paniego, Norma Beatriz; et al.; Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower; BioMed Central; BMC Bioinformatics; 17; 4-2016; 174-1801471-2105CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1186/s12859-016-1045-2info:eu-repo/semantics/altIdentifier/url/https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1045-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:17Zoai:ri.conicet.gov.ar:11336/46809instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:17.614CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower |
title |
Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower |
spellingShingle |
Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower Moschen, Sebastián Nicolás BIOINFORMATICA REDES GENICAS GIRASOL POSTGENÓMICA |
title_short |
Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower |
title_full |
Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower |
title_fullStr |
Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower |
title_full_unstemmed |
Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower |
title_sort |
Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower |
dc.creator.none.fl_str_mv |
Moschen, Sebastián Nicolás Higgins, Janet Di Rienzo, Julio Alejandro Heinz, Ruth Amelia Paniego, Norma Beatriz Fernández, Paula del Carmen |
author |
Moschen, Sebastián Nicolás |
author_facet |
Moschen, Sebastián Nicolás Higgins, Janet Di Rienzo, Julio Alejandro Heinz, Ruth Amelia Paniego, Norma Beatriz Fernández, Paula del Carmen |
author_role |
author |
author2 |
Higgins, Janet Di Rienzo, Julio Alejandro Heinz, Ruth Amelia Paniego, Norma Beatriz Fernández, Paula del Carmen |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
BIOINFORMATICA REDES GENICAS GIRASOL POSTGENÓMICA |
topic |
BIOINFORMATICA REDES GENICAS GIRASOL POSTGENÓMICA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.4 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
In recent years, high throughput technologies have led to an increase of datasets from omics disciplines allowing the understanding of the complex regulatory networks associated with biological processes. Leaf senescence is a complex mechanism controlled by multiple genetic and environmental variables, which has a strong impact on crop yield. Transcription factors (TFs) are key proteins in the regulation of gene expression, regulating different signaling pathways; their function is crucial for triggering and/or regulating different aspects of the leaf senescence process. The study of TF interactions and their integration with metabolic profiles under different developmental conditions, especially for a non-model organism such as sunflower, will open new insights into the details of gene regulation of leaf senescence. Fil: Moschen, Sebastián Nicolás. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Higgins, Janet. The Genome Analysis Centre; Reino Unido Fil: Di Rienzo, Julio Alejandro. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina Fil: Heinz, Ruth Amelia. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Paniego, Norma Beatriz. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Fernández, Paula del Carmen. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In recent years, high throughput technologies have led to an increase of datasets from omics disciplines allowing the understanding of the complex regulatory networks associated with biological processes. Leaf senescence is a complex mechanism controlled by multiple genetic and environmental variables, which has a strong impact on crop yield. Transcription factors (TFs) are key proteins in the regulation of gene expression, regulating different signaling pathways; their function is crucial for triggering and/or regulating different aspects of the leaf senescence process. The study of TF interactions and their integration with metabolic profiles under different developmental conditions, especially for a non-model organism such as sunflower, will open new insights into the details of gene regulation of leaf senescence. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/46809 Moschen, Sebastián Nicolás; Higgins, Janet; Di Rienzo, Julio Alejandro; Heinz, Ruth Amelia; Paniego, Norma Beatriz; et al.; Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower; BioMed Central; BMC Bioinformatics; 17; 4-2016; 174-180 1471-2105 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/46809 |
identifier_str_mv |
Moschen, Sebastián Nicolás; Higgins, Janet; Di Rienzo, Julio Alejandro; Heinz, Ruth Amelia; Paniego, Norma Beatriz; et al.; Network and biosignature analysis for the integration of transcriptomic and metabolomic data to characterize leaf senescence process in sunflower; BioMed Central; BMC Bioinformatics; 17; 4-2016; 174-180 1471-2105 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1186/s12859-016-1045-2 info:eu-repo/semantics/altIdentifier/url/https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1045-2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
BioMed Central |
publisher.none.fl_str_mv |
BioMed Central |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269454028767232 |
score |
13.13397 |