Transmembrane fluxes during electrolysis in high salinity brines: Effects on lithium and other raw materials recovery

Autores
Díaz Nieto, César Horacio; Mata, Matías Armando; Palacios, Camilo Javier Oscar; Palacios, Noelia Anahí; Torres, Walter Ramon; Vera, Maria Laura; Flexer, Victoria
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
During the production of high purity lithium salts, magnesium and calcium will readily crystalize as either carbonates or hydroxides if their concentrations have not been depleted to below 2 ppm. Magnesium and calcium can be fully abated electrochemically by production of hydroxide anions via water electrolysis. While brine alkalization within an electrochemical reactor has shown great performance at proof-of-concept level, this is not feasible at industrial scale. Solids cannot be produced, nor accumulated within a water electrolyzer, and membrane fouling must be avoided at all costs. An alternative is to work on a brine that has been fully depleted from multivalent cations and produce an increase in pH beyond the needs for successful crystallization of the hydroxides. In this way, the super alkaline brine can be used as an external precipitating agent that does not dilute the other key components of the brine, namely lithium cations. We have studied the competing ion migration between chloride and hydroxide anions across an anion exchange membrane in a water electrolyzer as a function of current density. The most important differences were observed in the magnitude of the changes in the solution volumes. While water electrolysis and electro-osmotic effects were identified as processes contributing to these changes, only classical osmosis is responsible for the differential effects. In the range of study, applied current density values from 80-225 A m−2 produced higher hydroxide concentrations, although no current density values were identified to produce remarkable changes in the energy efficiency. Beyond pH 14, the passage of hydroxide across the membrane becomes faster than that of chloride.
Fil: Díaz Nieto, César Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; Argentina
Fil: Mata, Matías Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; Argentina
Fil: Palacios, Camilo Javier Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; Argentina
Fil: Palacios, Noelia Anahí. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; Argentina
Fil: Torres, Walter Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; Argentina
Fil: Vera, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; Argentina
Fil: Flexer, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; Argentina
Materia
CRITICAL ELEMENTS
ION EXCHANGE MEMBRANE
LITHIUM
MAGNESIUM
SUSTAINABLE MINING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/230232

id CONICETDig_84509c5cb5c7f0b9ed53f9283ce8283d
oai_identifier_str oai:ri.conicet.gov.ar:11336/230232
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Transmembrane fluxes during electrolysis in high salinity brines: Effects on lithium and other raw materials recoveryDíaz Nieto, César HoracioMata, Matías ArmandoPalacios, Camilo Javier OscarPalacios, Noelia AnahíTorres, Walter RamonVera, Maria LauraFlexer, VictoriaCRITICAL ELEMENTSION EXCHANGE MEMBRANELITHIUMMAGNESIUMSUSTAINABLE MININGhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1During the production of high purity lithium salts, magnesium and calcium will readily crystalize as either carbonates or hydroxides if their concentrations have not been depleted to below 2 ppm. Magnesium and calcium can be fully abated electrochemically by production of hydroxide anions via water electrolysis. While brine alkalization within an electrochemical reactor has shown great performance at proof-of-concept level, this is not feasible at industrial scale. Solids cannot be produced, nor accumulated within a water electrolyzer, and membrane fouling must be avoided at all costs. An alternative is to work on a brine that has been fully depleted from multivalent cations and produce an increase in pH beyond the needs for successful crystallization of the hydroxides. In this way, the super alkaline brine can be used as an external precipitating agent that does not dilute the other key components of the brine, namely lithium cations. We have studied the competing ion migration between chloride and hydroxide anions across an anion exchange membrane in a water electrolyzer as a function of current density. The most important differences were observed in the magnitude of the changes in the solution volumes. While water electrolysis and electro-osmotic effects were identified as processes contributing to these changes, only classical osmosis is responsible for the differential effects. In the range of study, applied current density values from 80-225 A m−2 produced higher hydroxide concentrations, although no current density values were identified to produce remarkable changes in the energy efficiency. Beyond pH 14, the passage of hydroxide across the membrane becomes faster than that of chloride.Fil: Díaz Nieto, César Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; ArgentinaFil: Mata, Matías Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; ArgentinaFil: Palacios, Camilo Javier Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; ArgentinaFil: Palacios, Noelia Anahí. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; ArgentinaFil: Torres, Walter Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; ArgentinaFil: Vera, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; ArgentinaFil: Flexer, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; ArgentinaPergamon-Elsevier Science Ltd2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/230232Díaz Nieto, César Horacio; Mata, Matías Armando; Palacios, Camilo Javier Oscar; Palacios, Noelia Anahí; Torres, Walter Ramon; et al.; Transmembrane fluxes during electrolysis in high salinity brines: Effects on lithium and other raw materials recovery; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 454; 6-2023; 142401-1424110013-4686CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0013468623005790info:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2023.142401info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:25Zoai:ri.conicet.gov.ar:11336/230232instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:25.574CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Transmembrane fluxes during electrolysis in high salinity brines: Effects on lithium and other raw materials recovery
title Transmembrane fluxes during electrolysis in high salinity brines: Effects on lithium and other raw materials recovery
spellingShingle Transmembrane fluxes during electrolysis in high salinity brines: Effects on lithium and other raw materials recovery
Díaz Nieto, César Horacio
CRITICAL ELEMENTS
ION EXCHANGE MEMBRANE
LITHIUM
MAGNESIUM
SUSTAINABLE MINING
title_short Transmembrane fluxes during electrolysis in high salinity brines: Effects on lithium and other raw materials recovery
title_full Transmembrane fluxes during electrolysis in high salinity brines: Effects on lithium and other raw materials recovery
title_fullStr Transmembrane fluxes during electrolysis in high salinity brines: Effects on lithium and other raw materials recovery
title_full_unstemmed Transmembrane fluxes during electrolysis in high salinity brines: Effects on lithium and other raw materials recovery
title_sort Transmembrane fluxes during electrolysis in high salinity brines: Effects on lithium and other raw materials recovery
dc.creator.none.fl_str_mv Díaz Nieto, César Horacio
Mata, Matías Armando
Palacios, Camilo Javier Oscar
Palacios, Noelia Anahí
Torres, Walter Ramon
Vera, Maria Laura
Flexer, Victoria
author Díaz Nieto, César Horacio
author_facet Díaz Nieto, César Horacio
Mata, Matías Armando
Palacios, Camilo Javier Oscar
Palacios, Noelia Anahí
Torres, Walter Ramon
Vera, Maria Laura
Flexer, Victoria
author_role author
author2 Mata, Matías Armando
Palacios, Camilo Javier Oscar
Palacios, Noelia Anahí
Torres, Walter Ramon
Vera, Maria Laura
Flexer, Victoria
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv CRITICAL ELEMENTS
ION EXCHANGE MEMBRANE
LITHIUM
MAGNESIUM
SUSTAINABLE MINING
topic CRITICAL ELEMENTS
ION EXCHANGE MEMBRANE
LITHIUM
MAGNESIUM
SUSTAINABLE MINING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv During the production of high purity lithium salts, magnesium and calcium will readily crystalize as either carbonates or hydroxides if their concentrations have not been depleted to below 2 ppm. Magnesium and calcium can be fully abated electrochemically by production of hydroxide anions via water electrolysis. While brine alkalization within an electrochemical reactor has shown great performance at proof-of-concept level, this is not feasible at industrial scale. Solids cannot be produced, nor accumulated within a water electrolyzer, and membrane fouling must be avoided at all costs. An alternative is to work on a brine that has been fully depleted from multivalent cations and produce an increase in pH beyond the needs for successful crystallization of the hydroxides. In this way, the super alkaline brine can be used as an external precipitating agent that does not dilute the other key components of the brine, namely lithium cations. We have studied the competing ion migration between chloride and hydroxide anions across an anion exchange membrane in a water electrolyzer as a function of current density. The most important differences were observed in the magnitude of the changes in the solution volumes. While water electrolysis and electro-osmotic effects were identified as processes contributing to these changes, only classical osmosis is responsible for the differential effects. In the range of study, applied current density values from 80-225 A m−2 produced higher hydroxide concentrations, although no current density values were identified to produce remarkable changes in the energy efficiency. Beyond pH 14, the passage of hydroxide across the membrane becomes faster than that of chloride.
Fil: Díaz Nieto, César Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; Argentina
Fil: Mata, Matías Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; Argentina
Fil: Palacios, Camilo Javier Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; Argentina
Fil: Palacios, Noelia Anahí. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; Argentina
Fil: Torres, Walter Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; Argentina
Fil: Vera, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; Argentina
Fil: Flexer, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Universidad Nacional de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy - Gobierno de la Provincia de Jujuy. Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy; Argentina
description During the production of high purity lithium salts, magnesium and calcium will readily crystalize as either carbonates or hydroxides if their concentrations have not been depleted to below 2 ppm. Magnesium and calcium can be fully abated electrochemically by production of hydroxide anions via water electrolysis. While brine alkalization within an electrochemical reactor has shown great performance at proof-of-concept level, this is not feasible at industrial scale. Solids cannot be produced, nor accumulated within a water electrolyzer, and membrane fouling must be avoided at all costs. An alternative is to work on a brine that has been fully depleted from multivalent cations and produce an increase in pH beyond the needs for successful crystallization of the hydroxides. In this way, the super alkaline brine can be used as an external precipitating agent that does not dilute the other key components of the brine, namely lithium cations. We have studied the competing ion migration between chloride and hydroxide anions across an anion exchange membrane in a water electrolyzer as a function of current density. The most important differences were observed in the magnitude of the changes in the solution volumes. While water electrolysis and electro-osmotic effects were identified as processes contributing to these changes, only classical osmosis is responsible for the differential effects. In the range of study, applied current density values from 80-225 A m−2 produced higher hydroxide concentrations, although no current density values were identified to produce remarkable changes in the energy efficiency. Beyond pH 14, the passage of hydroxide across the membrane becomes faster than that of chloride.
publishDate 2023
dc.date.none.fl_str_mv 2023-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/230232
Díaz Nieto, César Horacio; Mata, Matías Armando; Palacios, Camilo Javier Oscar; Palacios, Noelia Anahí; Torres, Walter Ramon; et al.; Transmembrane fluxes during electrolysis in high salinity brines: Effects on lithium and other raw materials recovery; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 454; 6-2023; 142401-142411
0013-4686
CONICET Digital
CONICET
url http://hdl.handle.net/11336/230232
identifier_str_mv Díaz Nieto, César Horacio; Mata, Matías Armando; Palacios, Camilo Javier Oscar; Palacios, Noelia Anahí; Torres, Walter Ramon; et al.; Transmembrane fluxes during electrolysis in high salinity brines: Effects on lithium and other raw materials recovery; Pergamon-Elsevier Science Ltd; Electrochimica Acta; 454; 6-2023; 142401-142411
0013-4686
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0013468623005790
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.electacta.2023.142401
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980331719753728
score 12.993085