The one-sided A p conditions and local maximal operator

Autores
Bernardis, Ana Lucia; Gogatishvili, Amiran; Martín Reyes, Francisco Javier; Salvador, Pedro Ortega; Pick, Luboš
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce the one-sided local maximal operator and study its connection to the one-sided Ap conditions. We get a new characterization of the boundedness of the one-sided maximal operator on a quasi-Banach function space. We obtain applications to weighted Lebesgue spaces and variable-exponent Lebesgue spaces.
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Gogatishvili, Amiran. Institute Of Mathematics Of The Academy Of Sciences Of The Czech Republic; República Checa
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España
Fil: Salvador, Pedro Ortega. Universidad de Málaga; España
Fil: Pick, Luboš. Charles University; República Checa
Materia
One-Sided Ap Conditions
One-Sided Local Maximal Operator
Quasi-Banach Function Spaces
Variable-Exponent Lebesgue Spaces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/67952

id CONICETDig_842674ac009918cfb909c4a5775b987c
oai_identifier_str oai:ri.conicet.gov.ar:11336/67952
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The one-sided A p conditions and local maximal operatorBernardis, Ana LuciaGogatishvili, AmiranMartín Reyes, Francisco JavierSalvador, Pedro OrtegaPick, LubošOne-Sided Ap ConditionsOne-Sided Local Maximal OperatorQuasi-Banach Function SpacesVariable-Exponent Lebesgue Spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce the one-sided local maximal operator and study its connection to the one-sided Ap conditions. We get a new characterization of the boundedness of the one-sided maximal operator on a quasi-Banach function space. We obtain applications to weighted Lebesgue spaces and variable-exponent Lebesgue spaces.Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Gogatishvili, Amiran. Institute Of Mathematics Of The Academy Of Sciences Of The Czech Republic; República ChecaFil: Martín Reyes, Francisco Javier. Universidad de Málaga; EspañaFil: Salvador, Pedro Ortega. Universidad de Málaga; EspañaFil: Pick, Luboš. Charles University; República ChecaCambridge University Press2012-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67952Bernardis, Ana Lucia; Gogatishvili, Amiran; Martín Reyes, Francisco Javier; Salvador, Pedro Ortega; Pick, Luboš; The one-sided A p conditions and local maximal operator; Cambridge University Press; Proceedings Of The Edinburgh Mathematical Society; 55; 1; 2-2012; 79-1040013-0915CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/proceedings-of-the-edinburgh-mathematical-society/article/onesided-ap-conditions-and-local-maximal-operator/B4420FFA32E30D0E3908EE30E9EAF33Dinfo:eu-repo/semantics/altIdentifier/doi/10.1017/S0013091510000635info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:16:07Zoai:ri.conicet.gov.ar:11336/67952instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:16:07.422CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The one-sided A p conditions and local maximal operator
title The one-sided A p conditions and local maximal operator
spellingShingle The one-sided A p conditions and local maximal operator
Bernardis, Ana Lucia
One-Sided Ap Conditions
One-Sided Local Maximal Operator
Quasi-Banach Function Spaces
Variable-Exponent Lebesgue Spaces
title_short The one-sided A p conditions and local maximal operator
title_full The one-sided A p conditions and local maximal operator
title_fullStr The one-sided A p conditions and local maximal operator
title_full_unstemmed The one-sided A p conditions and local maximal operator
title_sort The one-sided A p conditions and local maximal operator
dc.creator.none.fl_str_mv Bernardis, Ana Lucia
Gogatishvili, Amiran
Martín Reyes, Francisco Javier
Salvador, Pedro Ortega
Pick, Luboš
author Bernardis, Ana Lucia
author_facet Bernardis, Ana Lucia
Gogatishvili, Amiran
Martín Reyes, Francisco Javier
Salvador, Pedro Ortega
Pick, Luboš
author_role author
author2 Gogatishvili, Amiran
Martín Reyes, Francisco Javier
Salvador, Pedro Ortega
Pick, Luboš
author2_role author
author
author
author
dc.subject.none.fl_str_mv One-Sided Ap Conditions
One-Sided Local Maximal Operator
Quasi-Banach Function Spaces
Variable-Exponent Lebesgue Spaces
topic One-Sided Ap Conditions
One-Sided Local Maximal Operator
Quasi-Banach Function Spaces
Variable-Exponent Lebesgue Spaces
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce the one-sided local maximal operator and study its connection to the one-sided Ap conditions. We get a new characterization of the boundedness of the one-sided maximal operator on a quasi-Banach function space. We obtain applications to weighted Lebesgue spaces and variable-exponent Lebesgue spaces.
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Gogatishvili, Amiran. Institute Of Mathematics Of The Academy Of Sciences Of The Czech Republic; República Checa
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España
Fil: Salvador, Pedro Ortega. Universidad de Málaga; España
Fil: Pick, Luboš. Charles University; República Checa
description We introduce the one-sided local maximal operator and study its connection to the one-sided Ap conditions. We get a new characterization of the boundedness of the one-sided maximal operator on a quasi-Banach function space. We obtain applications to weighted Lebesgue spaces and variable-exponent Lebesgue spaces.
publishDate 2012
dc.date.none.fl_str_mv 2012-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/67952
Bernardis, Ana Lucia; Gogatishvili, Amiran; Martín Reyes, Francisco Javier; Salvador, Pedro Ortega; Pick, Luboš; The one-sided A p conditions and local maximal operator; Cambridge University Press; Proceedings Of The Edinburgh Mathematical Society; 55; 1; 2-2012; 79-104
0013-0915
CONICET Digital
CONICET
url http://hdl.handle.net/11336/67952
identifier_str_mv Bernardis, Ana Lucia; Gogatishvili, Amiran; Martín Reyes, Francisco Javier; Salvador, Pedro Ortega; Pick, Luboš; The one-sided A p conditions and local maximal operator; Cambridge University Press; Proceedings Of The Edinburgh Mathematical Society; 55; 1; 2-2012; 79-104
0013-0915
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/proceedings-of-the-edinburgh-mathematical-society/article/onesided-ap-conditions-and-local-maximal-operator/B4420FFA32E30D0E3908EE30E9EAF33D
info:eu-repo/semantics/altIdentifier/doi/10.1017/S0013091510000635
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083309504823296
score 13.22299