A systematic approach for the design of optimal monitoring systems for large scale processes
- Autores
- Zumoffen, David Alejandro Ramon; Basualdo, Marta
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work a new concept for designing an efficient monitoring system for large scale chemical plants is presented. It is considered that the monitoring problem must be solved integrated with the optimal sensor location together with the plant-wide control structure design. The solution of these problems involves deciding among a great number of possible combinations between the input-output variables. It is done supported by the application of genetic algorithm (GA). The key new idea is to propose an adequate objective function, within the GA, that takes into account a fault detectability index based on combined statistics. Additionally, by using a specific penalty function, it is possible to drive the search to the less expensive structure, that is by using the lowest number of sensors. The well-known benchmark case of the Tennessee Eastman plant (TE) is chosen for testing this methodology and for discussion purposes. Since several authors have studied the TE case, the results obtained here can be rigorously compared with those already published. All of the previous works considered that every TE output variables were available for the abnormal events detection for designing the monitoring system.
Fil: Zumoffen, David Alejandro Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina
Fil: Basualdo, Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina - Materia
-
Optimal Monitoring System Design
Optimal Sensor Location
Detectability Index
Genetic Algorithm - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15200
Ver los metadatos del registro completo
| id |
CONICETDig_83df7109e87c4206006cc6e41ded5077 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15200 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A systematic approach for the design of optimal monitoring systems for large scale processesZumoffen, David Alejandro RamonBasualdo, MartaOptimal Monitoring System DesignOptimal Sensor LocationDetectability IndexGenetic Algorithmhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this work a new concept for designing an efficient monitoring system for large scale chemical plants is presented. It is considered that the monitoring problem must be solved integrated with the optimal sensor location together with the plant-wide control structure design. The solution of these problems involves deciding among a great number of possible combinations between the input-output variables. It is done supported by the application of genetic algorithm (GA). The key new idea is to propose an adequate objective function, within the GA, that takes into account a fault detectability index based on combined statistics. Additionally, by using a specific penalty function, it is possible to drive the search to the less expensive structure, that is by using the lowest number of sensors. The well-known benchmark case of the Tennessee Eastman plant (TE) is chosen for testing this methodology and for discussion purposes. Since several authors have studied the TE case, the results obtained here can be rigorously compared with those already published. All of the previous works considered that every TE output variables were available for the abnormal events detection for designing the monitoring system.Fil: Zumoffen, David Alejandro Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; ArgentinaFil: Basualdo, Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; ArgentinaAmerican Chemical Society2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15200Zumoffen, David Alejandro Ramon; Basualdo, Marta; A systematic approach for the design of optimal monitoring systems for large scale processes; American Chemical Society; Industrial & Engineering Chemical Research; 49; 4; -1-2010; 1749-17610888-58851520-5045enginfo:eu-repo/semantics/altIdentifier/doi/10.1021/ie9017836info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie9017836info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:37:55Zoai:ri.conicet.gov.ar:11336/15200instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:37:56.203CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A systematic approach for the design of optimal monitoring systems for large scale processes |
| title |
A systematic approach for the design of optimal monitoring systems for large scale processes |
| spellingShingle |
A systematic approach for the design of optimal monitoring systems for large scale processes Zumoffen, David Alejandro Ramon Optimal Monitoring System Design Optimal Sensor Location Detectability Index Genetic Algorithm |
| title_short |
A systematic approach for the design of optimal monitoring systems for large scale processes |
| title_full |
A systematic approach for the design of optimal monitoring systems for large scale processes |
| title_fullStr |
A systematic approach for the design of optimal monitoring systems for large scale processes |
| title_full_unstemmed |
A systematic approach for the design of optimal monitoring systems for large scale processes |
| title_sort |
A systematic approach for the design of optimal monitoring systems for large scale processes |
| dc.creator.none.fl_str_mv |
Zumoffen, David Alejandro Ramon Basualdo, Marta |
| author |
Zumoffen, David Alejandro Ramon |
| author_facet |
Zumoffen, David Alejandro Ramon Basualdo, Marta |
| author_role |
author |
| author2 |
Basualdo, Marta |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Optimal Monitoring System Design Optimal Sensor Location Detectability Index Genetic Algorithm |
| topic |
Optimal Monitoring System Design Optimal Sensor Location Detectability Index Genetic Algorithm |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
In this work a new concept for designing an efficient monitoring system for large scale chemical plants is presented. It is considered that the monitoring problem must be solved integrated with the optimal sensor location together with the plant-wide control structure design. The solution of these problems involves deciding among a great number of possible combinations between the input-output variables. It is done supported by the application of genetic algorithm (GA). The key new idea is to propose an adequate objective function, within the GA, that takes into account a fault detectability index based on combined statistics. Additionally, by using a specific penalty function, it is possible to drive the search to the less expensive structure, that is by using the lowest number of sensors. The well-known benchmark case of the Tennessee Eastman plant (TE) is chosen for testing this methodology and for discussion purposes. Since several authors have studied the TE case, the results obtained here can be rigorously compared with those already published. All of the previous works considered that every TE output variables were available for the abnormal events detection for designing the monitoring system. Fil: Zumoffen, David Alejandro Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina Fil: Basualdo, Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario; Argentina |
| description |
In this work a new concept for designing an efficient monitoring system for large scale chemical plants is presented. It is considered that the monitoring problem must be solved integrated with the optimal sensor location together with the plant-wide control structure design. The solution of these problems involves deciding among a great number of possible combinations between the input-output variables. It is done supported by the application of genetic algorithm (GA). The key new idea is to propose an adequate objective function, within the GA, that takes into account a fault detectability index based on combined statistics. Additionally, by using a specific penalty function, it is possible to drive the search to the less expensive structure, that is by using the lowest number of sensors. The well-known benchmark case of the Tennessee Eastman plant (TE) is chosen for testing this methodology and for discussion purposes. Since several authors have studied the TE case, the results obtained here can be rigorously compared with those already published. All of the previous works considered that every TE output variables were available for the abnormal events detection for designing the monitoring system. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15200 Zumoffen, David Alejandro Ramon; Basualdo, Marta; A systematic approach for the design of optimal monitoring systems for large scale processes; American Chemical Society; Industrial & Engineering Chemical Research; 49; 4; -1-2010; 1749-1761 0888-5885 1520-5045 |
| url |
http://hdl.handle.net/11336/15200 |
| identifier_str_mv |
Zumoffen, David Alejandro Ramon; Basualdo, Marta; A systematic approach for the design of optimal monitoring systems for large scale processes; American Chemical Society; Industrial & Engineering Chemical Research; 49; 4; -1-2010; 1749-1761 0888-5885 1520-5045 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/ie9017836 info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie9017836 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Chemical Society |
| publisher.none.fl_str_mv |
American Chemical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597346374385664 |
| score |
13.223955 |