Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals
- Autores
- Talagañis, Basilio Andres; Meyer, Gabriel Omar; Oliva, Diego Gabriel; Fuentes Mora, Mauren; Aguirre, Pio Antonio
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Hydrogen at high purity degrees can be obtained by using the well-known Pressure Swing Adsorption (PSA) process. In this paper, a Pressure Swing Absorption (PSAb) alternative operating batch wise is analyzed. An optimal design of cyclic processes for hydrogen purification using hydride-forming metals as absorption material is addressed. The selected case study is a thermo-chemical treatment process that consumes high purity hydrogen to reduce oxides and generates a waste stream that contains residual H2. PSAb process is fed with this hydrogen-poor stream; and high purity hydrogen recovery levels are obtained. A mathematical model based on an energy integrated scheme is presented to develop the optimal process design and to obtain optimal operating conditions. Various optimized solutions are compared by modifying key parameters or restriction equations. Thus, an interesting trade-off between H2 recovery and system size is analyzed. Large systems operate at large cycle times, obtaining up to 98% of H2 recovery in the order of hours, whereas small systems can recover up to 60% of H2 in short cycles of a few seconds
Fil: Talagañis, Basilio Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Meyer, Gabriel Omar. Comision Nacional de Energia Atomica. Fundación Jose A. Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Oliva, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Fuentes Mora, Mauren. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Modelling
Optimal Design
Hydrides
Hydrogen Purification - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22731
Ver los metadatos del registro completo
id |
CONICETDig_61aa960d2cdc54edaae4c7971bd55e2e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22731 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metalsTalagañis, Basilio AndresMeyer, Gabriel OmarOliva, Diego GabrielFuentes Mora, MaurenAguirre, Pio AntonioModellingOptimal DesignHydridesHydrogen Purificationhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Hydrogen at high purity degrees can be obtained by using the well-known Pressure Swing Adsorption (PSA) process. In this paper, a Pressure Swing Absorption (PSAb) alternative operating batch wise is analyzed. An optimal design of cyclic processes for hydrogen purification using hydride-forming metals as absorption material is addressed. The selected case study is a thermo-chemical treatment process that consumes high purity hydrogen to reduce oxides and generates a waste stream that contains residual H2. PSAb process is fed with this hydrogen-poor stream; and high purity hydrogen recovery levels are obtained. A mathematical model based on an energy integrated scheme is presented to develop the optimal process design and to obtain optimal operating conditions. Various optimized solutions are compared by modifying key parameters or restriction equations. Thus, an interesting trade-off between H2 recovery and system size is analyzed. Large systems operate at large cycle times, obtaining up to 98% of H2 recovery in the order of hours, whereas small systems can recover up to 60% of H2 in short cycles of a few secondsFil: Talagañis, Basilio Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Meyer, Gabriel Omar. Comision Nacional de Energia Atomica. Fundación Jose A. Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Oliva, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Fuentes Mora, Mauren. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaElsevier2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22731Talagañis, Basilio Andres; Meyer, Gabriel Omar; Oliva, Diego Gabriel; Fuentes Mora, Mauren; Aguirre, Pio Antonio; Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals; Elsevier; International Journal of Hydrogen Energy; 39; 33; 11-2014; 18997-190080360-3199CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S036031991402566Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2014.09.045info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:56Zoai:ri.conicet.gov.ar:11336/22731instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:56.642CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals |
title |
Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals |
spellingShingle |
Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals Talagañis, Basilio Andres Modelling Optimal Design Hydrides Hydrogen Purification |
title_short |
Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals |
title_full |
Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals |
title_fullStr |
Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals |
title_full_unstemmed |
Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals |
title_sort |
Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals |
dc.creator.none.fl_str_mv |
Talagañis, Basilio Andres Meyer, Gabriel Omar Oliva, Diego Gabriel Fuentes Mora, Mauren Aguirre, Pio Antonio |
author |
Talagañis, Basilio Andres |
author_facet |
Talagañis, Basilio Andres Meyer, Gabriel Omar Oliva, Diego Gabriel Fuentes Mora, Mauren Aguirre, Pio Antonio |
author_role |
author |
author2 |
Meyer, Gabriel Omar Oliva, Diego Gabriel Fuentes Mora, Mauren Aguirre, Pio Antonio |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Modelling Optimal Design Hydrides Hydrogen Purification |
topic |
Modelling Optimal Design Hydrides Hydrogen Purification |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Hydrogen at high purity degrees can be obtained by using the well-known Pressure Swing Adsorption (PSA) process. In this paper, a Pressure Swing Absorption (PSAb) alternative operating batch wise is analyzed. An optimal design of cyclic processes for hydrogen purification using hydride-forming metals as absorption material is addressed. The selected case study is a thermo-chemical treatment process that consumes high purity hydrogen to reduce oxides and generates a waste stream that contains residual H2. PSAb process is fed with this hydrogen-poor stream; and high purity hydrogen recovery levels are obtained. A mathematical model based on an energy integrated scheme is presented to develop the optimal process design and to obtain optimal operating conditions. Various optimized solutions are compared by modifying key parameters or restriction equations. Thus, an interesting trade-off between H2 recovery and system size is analyzed. Large systems operate at large cycle times, obtaining up to 98% of H2 recovery in the order of hours, whereas small systems can recover up to 60% of H2 in short cycles of a few seconds Fil: Talagañis, Basilio Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Meyer, Gabriel Omar. Comision Nacional de Energia Atomica. Fundación Jose A. Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Oliva, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Fuentes Mora, Mauren. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
Hydrogen at high purity degrees can be obtained by using the well-known Pressure Swing Adsorption (PSA) process. In this paper, a Pressure Swing Absorption (PSAb) alternative operating batch wise is analyzed. An optimal design of cyclic processes for hydrogen purification using hydride-forming metals as absorption material is addressed. The selected case study is a thermo-chemical treatment process that consumes high purity hydrogen to reduce oxides and generates a waste stream that contains residual H2. PSAb process is fed with this hydrogen-poor stream; and high purity hydrogen recovery levels are obtained. A mathematical model based on an energy integrated scheme is presented to develop the optimal process design and to obtain optimal operating conditions. Various optimized solutions are compared by modifying key parameters or restriction equations. Thus, an interesting trade-off between H2 recovery and system size is analyzed. Large systems operate at large cycle times, obtaining up to 98% of H2 recovery in the order of hours, whereas small systems can recover up to 60% of H2 in short cycles of a few seconds |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22731 Talagañis, Basilio Andres; Meyer, Gabriel Omar; Oliva, Diego Gabriel; Fuentes Mora, Mauren; Aguirre, Pio Antonio; Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals; Elsevier; International Journal of Hydrogen Energy; 39; 33; 11-2014; 18997-19008 0360-3199 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22731 |
identifier_str_mv |
Talagañis, Basilio Andres; Meyer, Gabriel Omar; Oliva, Diego Gabriel; Fuentes Mora, Mauren; Aguirre, Pio Antonio; Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals; Elsevier; International Journal of Hydrogen Energy; 39; 33; 11-2014; 18997-19008 0360-3199 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S036031991402566X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2014.09.045 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613944388354048 |
score |
13.070432 |