Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals

Autores
Talagañis, Basilio Andres; Meyer, Gabriel Omar; Oliva, Diego Gabriel; Fuentes Mora, Mauren; Aguirre, Pio Antonio
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Hydrogen at high purity degrees can be obtained by using the well-known Pressure Swing Adsorption (PSA) process. In this paper, a Pressure Swing Absorption (PSAb) alternative operating batch wise is analyzed. An optimal design of cyclic processes for hydrogen purification using hydride-forming metals as absorption material is addressed. The selected case study is a thermo-chemical treatment process that consumes high purity hydrogen to reduce oxides and generates a waste stream that contains residual H2. PSAb process is fed with this hydrogen-poor stream; and high purity hydrogen recovery levels are obtained. A mathematical model based on an energy integrated scheme is presented to develop the optimal process design and to obtain optimal operating conditions. Various optimized solutions are compared by modifying key parameters or restriction equations. Thus, an interesting trade-off between H2 recovery and system size is analyzed. Large systems operate at large cycle times, obtaining up to 98% of H2 recovery in the order of hours, whereas small systems can recover up to 60% of H2 in short cycles of a few seconds
Fil: Talagañis, Basilio Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Meyer, Gabriel Omar. Comision Nacional de Energia Atomica. Fundación Jose A. Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Oliva, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Fuentes Mora, Mauren. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Materia
Modelling
Optimal Design
Hydrides
Hydrogen Purification
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/22731

id CONICETDig_61aa960d2cdc54edaae4c7971bd55e2e
oai_identifier_str oai:ri.conicet.gov.ar:11336/22731
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metalsTalagañis, Basilio AndresMeyer, Gabriel OmarOliva, Diego GabrielFuentes Mora, MaurenAguirre, Pio AntonioModellingOptimal DesignHydridesHydrogen Purificationhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Hydrogen at high purity degrees can be obtained by using the well-known Pressure Swing Adsorption (PSA) process. In this paper, a Pressure Swing Absorption (PSAb) alternative operating batch wise is analyzed. An optimal design of cyclic processes for hydrogen purification using hydride-forming metals as absorption material is addressed. The selected case study is a thermo-chemical treatment process that consumes high purity hydrogen to reduce oxides and generates a waste stream that contains residual H2. PSAb process is fed with this hydrogen-poor stream; and high purity hydrogen recovery levels are obtained. A mathematical model based on an energy integrated scheme is presented to develop the optimal process design and to obtain optimal operating conditions. Various optimized solutions are compared by modifying key parameters or restriction equations. Thus, an interesting trade-off between H2 recovery and system size is analyzed. Large systems operate at large cycle times, obtaining up to 98% of H2 recovery in the order of hours, whereas small systems can recover up to 60% of H2 in short cycles of a few secondsFil: Talagañis, Basilio Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Meyer, Gabriel Omar. Comision Nacional de Energia Atomica. Fundación Jose A. Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Oliva, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Fuentes Mora, Mauren. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaElsevier2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22731Talagañis, Basilio Andres; Meyer, Gabriel Omar; Oliva, Diego Gabriel; Fuentes Mora, Mauren; Aguirre, Pio Antonio; Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals; Elsevier; International Journal of Hydrogen Energy; 39; 33; 11-2014; 18997-190080360-3199CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S036031991402566Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2014.09.045info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:56Zoai:ri.conicet.gov.ar:11336/22731instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:56.642CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals
title Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals
spellingShingle Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals
Talagañis, Basilio Andres
Modelling
Optimal Design
Hydrides
Hydrogen Purification
title_short Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals
title_full Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals
title_fullStr Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals
title_full_unstemmed Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals
title_sort Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals
dc.creator.none.fl_str_mv Talagañis, Basilio Andres
Meyer, Gabriel Omar
Oliva, Diego Gabriel
Fuentes Mora, Mauren
Aguirre, Pio Antonio
author Talagañis, Basilio Andres
author_facet Talagañis, Basilio Andres
Meyer, Gabriel Omar
Oliva, Diego Gabriel
Fuentes Mora, Mauren
Aguirre, Pio Antonio
author_role author
author2 Meyer, Gabriel Omar
Oliva, Diego Gabriel
Fuentes Mora, Mauren
Aguirre, Pio Antonio
author2_role author
author
author
author
dc.subject.none.fl_str_mv Modelling
Optimal Design
Hydrides
Hydrogen Purification
topic Modelling
Optimal Design
Hydrides
Hydrogen Purification
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Hydrogen at high purity degrees can be obtained by using the well-known Pressure Swing Adsorption (PSA) process. In this paper, a Pressure Swing Absorption (PSAb) alternative operating batch wise is analyzed. An optimal design of cyclic processes for hydrogen purification using hydride-forming metals as absorption material is addressed. The selected case study is a thermo-chemical treatment process that consumes high purity hydrogen to reduce oxides and generates a waste stream that contains residual H2. PSAb process is fed with this hydrogen-poor stream; and high purity hydrogen recovery levels are obtained. A mathematical model based on an energy integrated scheme is presented to develop the optimal process design and to obtain optimal operating conditions. Various optimized solutions are compared by modifying key parameters or restriction equations. Thus, an interesting trade-off between H2 recovery and system size is analyzed. Large systems operate at large cycle times, obtaining up to 98% of H2 recovery in the order of hours, whereas small systems can recover up to 60% of H2 in short cycles of a few seconds
Fil: Talagañis, Basilio Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Meyer, Gabriel Omar. Comision Nacional de Energia Atomica. Fundación Jose A. Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Oliva, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Fuentes Mora, Mauren. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
description Hydrogen at high purity degrees can be obtained by using the well-known Pressure Swing Adsorption (PSA) process. In this paper, a Pressure Swing Absorption (PSAb) alternative operating batch wise is analyzed. An optimal design of cyclic processes for hydrogen purification using hydride-forming metals as absorption material is addressed. The selected case study is a thermo-chemical treatment process that consumes high purity hydrogen to reduce oxides and generates a waste stream that contains residual H2. PSAb process is fed with this hydrogen-poor stream; and high purity hydrogen recovery levels are obtained. A mathematical model based on an energy integrated scheme is presented to develop the optimal process design and to obtain optimal operating conditions. Various optimized solutions are compared by modifying key parameters or restriction equations. Thus, an interesting trade-off between H2 recovery and system size is analyzed. Large systems operate at large cycle times, obtaining up to 98% of H2 recovery in the order of hours, whereas small systems can recover up to 60% of H2 in short cycles of a few seconds
publishDate 2014
dc.date.none.fl_str_mv 2014-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/22731
Talagañis, Basilio Andres; Meyer, Gabriel Omar; Oliva, Diego Gabriel; Fuentes Mora, Mauren; Aguirre, Pio Antonio; Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals; Elsevier; International Journal of Hydrogen Energy; 39; 33; 11-2014; 18997-19008
0360-3199
CONICET Digital
CONICET
url http://hdl.handle.net/11336/22731
identifier_str_mv Talagañis, Basilio Andres; Meyer, Gabriel Omar; Oliva, Diego Gabriel; Fuentes Mora, Mauren; Aguirre, Pio Antonio; Modeling and optimal design of cyclic processes for hydrogen purification using hydrides-forming metals; Elsevier; International Journal of Hydrogen Energy; 39; 33; 11-2014; 18997-19008
0360-3199
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S036031991402566X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2014.09.045
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613944388354048
score 13.070432