Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips

Autores
Gelman Constantin, Julián; Carignano, Marcelo Andres; Corti, Horacio Roberto; Szleifer, Igal
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We have performed extensive MD simulations of nanoindentation of an ice slab with model AFM tips. We found the presence of a quasi liquid layer between the tip and the ice for all explored indentation depths. For the smallest tip studied (R = 0.55 nm), force versus indentation depth curves present peaks, related with the melting of distinct monolayers of ice, and we were able to calculate the work (free energy) associated with it. For a larger tip (R = 1.80 nm), size is no longer commensurate with average monolayer thickness and we did not nd a clear structure in force curves. This work can help guide the interpretation of experimental AFM indentation of ice and other crystalline solids. More specifically, it provides guidelines for tip sizes where layer-by-layer melting can be achieved and for the order of magnitude of forces that need to be detected.
Fil: Gelman Constantin, Julián. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Carignano, Marcelo Andres. Hamad Bin Khalifa University; Qatar
Fil: Corti, Horacio Roberto. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Szleifer, Igal. Northwestern University; Estados Unidos
Materia
Capa Cuasi Liquida (Qll)
Microscopia de Fuerza (Afm)
Dinamica Molecular (Md)
Hielo
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/42314

id CONICETDig_82db74433bf6b69263f06f822d3d1852
oai_identifier_str oai:ri.conicet.gov.ar:11336/42314
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy TipsGelman Constantin, JuliánCarignano, Marcelo AndresCorti, Horacio RobertoSzleifer, IgalCapa Cuasi Liquida (Qll)Microscopia de Fuerza (Afm)Dinamica Molecular (Md)Hielohttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We have performed extensive MD simulations of nanoindentation of an ice slab with model AFM tips. We found the presence of a quasi liquid layer between the tip and the ice for all explored indentation depths. For the smallest tip studied (R = 0.55 nm), force versus indentation depth curves present peaks, related with the melting of distinct monolayers of ice, and we were able to calculate the work (free energy) associated with it. For a larger tip (R = 1.80 nm), size is no longer commensurate with average monolayer thickness and we did not nd a clear structure in force curves. This work can help guide the interpretation of experimental AFM indentation of ice and other crystalline solids. More specifically, it provides guidelines for tip sizes where layer-by-layer melting can be achieved and for the order of magnitude of forces that need to be detected.Fil: Gelman Constantin, Julián. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Carignano, Marcelo Andres. Hamad Bin Khalifa University; QatarFil: Corti, Horacio Roberto. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Szleifer, Igal. Northwestern University; Estados UnidosAmerican Chemical Society2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42314Gelman Constantin, Julián; Carignano, Marcelo Andres; Corti, Horacio Roberto; Szleifer, Igal; Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips; American Chemical Society; Journal of Physical Chemistry C; 119; 48; 11-2015; 27118-271241932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.5b10230info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.5b10230info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:18Zoai:ri.conicet.gov.ar:11336/42314instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:19.04CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips
title Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips
spellingShingle Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips
Gelman Constantin, Julián
Capa Cuasi Liquida (Qll)
Microscopia de Fuerza (Afm)
Dinamica Molecular (Md)
Hielo
title_short Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips
title_full Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips
title_fullStr Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips
title_full_unstemmed Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips
title_sort Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips
dc.creator.none.fl_str_mv Gelman Constantin, Julián
Carignano, Marcelo Andres
Corti, Horacio Roberto
Szleifer, Igal
author Gelman Constantin, Julián
author_facet Gelman Constantin, Julián
Carignano, Marcelo Andres
Corti, Horacio Roberto
Szleifer, Igal
author_role author
author2 Carignano, Marcelo Andres
Corti, Horacio Roberto
Szleifer, Igal
author2_role author
author
author
dc.subject.none.fl_str_mv Capa Cuasi Liquida (Qll)
Microscopia de Fuerza (Afm)
Dinamica Molecular (Md)
Hielo
topic Capa Cuasi Liquida (Qll)
Microscopia de Fuerza (Afm)
Dinamica Molecular (Md)
Hielo
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We have performed extensive MD simulations of nanoindentation of an ice slab with model AFM tips. We found the presence of a quasi liquid layer between the tip and the ice for all explored indentation depths. For the smallest tip studied (R = 0.55 nm), force versus indentation depth curves present peaks, related with the melting of distinct monolayers of ice, and we were able to calculate the work (free energy) associated with it. For a larger tip (R = 1.80 nm), size is no longer commensurate with average monolayer thickness and we did not nd a clear structure in force curves. This work can help guide the interpretation of experimental AFM indentation of ice and other crystalline solids. More specifically, it provides guidelines for tip sizes where layer-by-layer melting can be achieved and for the order of magnitude of forces that need to be detected.
Fil: Gelman Constantin, Julián. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Carignano, Marcelo Andres. Hamad Bin Khalifa University; Qatar
Fil: Corti, Horacio Roberto. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Szleifer, Igal. Northwestern University; Estados Unidos
description We have performed extensive MD simulations of nanoindentation of an ice slab with model AFM tips. We found the presence of a quasi liquid layer between the tip and the ice for all explored indentation depths. For the smallest tip studied (R = 0.55 nm), force versus indentation depth curves present peaks, related with the melting of distinct monolayers of ice, and we were able to calculate the work (free energy) associated with it. For a larger tip (R = 1.80 nm), size is no longer commensurate with average monolayer thickness and we did not nd a clear structure in force curves. This work can help guide the interpretation of experimental AFM indentation of ice and other crystalline solids. More specifically, it provides guidelines for tip sizes where layer-by-layer melting can be achieved and for the order of magnitude of forces that need to be detected.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/42314
Gelman Constantin, Julián; Carignano, Marcelo Andres; Corti, Horacio Roberto; Szleifer, Igal; Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips; American Chemical Society; Journal of Physical Chemistry C; 119; 48; 11-2015; 27118-27124
1932-7447
CONICET Digital
CONICET
url http://hdl.handle.net/11336/42314
identifier_str_mv Gelman Constantin, Julián; Carignano, Marcelo Andres; Corti, Horacio Roberto; Szleifer, Igal; Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips; American Chemical Society; Journal of Physical Chemistry C; 119; 48; 11-2015; 27118-27124
1932-7447
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jpcc.5b10230
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcc.5b10230
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613061309104128
score 13.070432