Optimal design of a two-stage membrane system for hydrogen separation in refining processes

Autores
Arias, Ana Marisa; Mores, Patricia Liliana; Scenna, Nicolas Jose; Caballero, José A.; Mussati, Sergio Fabian; Mussati, Miguel Ceferino
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper fits into the process system engineering field by addressing the optimization of a two-stage membrane system for H2 separation in refinery processes. To this end, a nonlinear mathematical programming (NLP) model is developed to simultaneously optimize the size of each membrane stage (membrane area, heat transfer area, and installed power for compressors and vacuum pumps) and operating conditions (flow rates, pressures, temperatures, and compositions) to achieve desired target levels of H2 product purity and H2 recovery at a minimum total annual cost. Optimal configuration and process design are obtained from a model which embeds different operating modes and process configurations. For instance, the following candidate ways to create the driving force across the membrane are embedded: (a) compression of both feed and/or permeate streams, or (b) vacuum application in permeate streams, or (c) a combination of (a) and (b). In addition, the potential selection of an expansion turbine to recover energy from the retentate stream (energy recovery system) is also embedded. For a H2 product purity of 0.90 and H2 recovery of 90%, a minimum total annual cost of 1.764 M$·year-1 was obtained for treating 100 kmol·h-1 with 0.18, 0.16, 0.62, and 0.04 mole fraction of H2, CO, N2, CO2, respectively. The optimal solution selected a combination of compression and vacuum to create the driving force and removed the expansion turbine. Afterwards, this optimal solution was compared in terms of costs, process-unit sizes, and operating conditions to the following two sub-optimal solutions: (i) no vacuum in permeate stream is applied, and (ii) the expansion turbine is included into the process. The comparison showed that the latter (ii) has the highest total annual cost (TAC) value, which is around 7% higher than the former (i) and 24% higher than the found optimal solution. Finally, a sensitivity analysis to investigate the influence of the desired H2 product purity and H2 recovery is presented. Opposite cost-based trade-offs between total membrane area and total electric power were observed with the variations of these two model parameters. This paper contributes a valuable decision-support tool in the process system engineering field for designing, simulating, and optimizing membrane-based systems for H2 separation in a particular industrial case; and the presented optimization results provide useful guidelines to assist in selecting the optimal configuration and operating mode.
Fil: Arias, Ana Marisa. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Mores, Patricia Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina
Fil: Scenna, Nicolas Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina
Fil: Caballero, José A.. Universidad de Alicante; España
Fil: Mussati, Sergio Fabian. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Materia
DESIGN
GAMS
H2 SEPARATION
MULTI-STAGE MEMBRANE SYSTEM
NLP
OPERATION
SIMULTANEOUS OPTIMIZATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/91830

id CONICETDig_8231e616be324491d9d947734d1390e1
oai_identifier_str oai:ri.conicet.gov.ar:11336/91830
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Optimal design of a two-stage membrane system for hydrogen separation in refining processesArias, Ana MarisaMores, Patricia LilianaScenna, Nicolas JoseCaballero, José A.Mussati, Sergio FabianMussati, Miguel CeferinoDESIGNGAMSH2 SEPARATIONMULTI-STAGE MEMBRANE SYSTEMNLPOPERATIONSIMULTANEOUS OPTIMIZATIONhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This paper fits into the process system engineering field by addressing the optimization of a two-stage membrane system for H2 separation in refinery processes. To this end, a nonlinear mathematical programming (NLP) model is developed to simultaneously optimize the size of each membrane stage (membrane area, heat transfer area, and installed power for compressors and vacuum pumps) and operating conditions (flow rates, pressures, temperatures, and compositions) to achieve desired target levels of H2 product purity and H2 recovery at a minimum total annual cost. Optimal configuration and process design are obtained from a model which embeds different operating modes and process configurations. For instance, the following candidate ways to create the driving force across the membrane are embedded: (a) compression of both feed and/or permeate streams, or (b) vacuum application in permeate streams, or (c) a combination of (a) and (b). In addition, the potential selection of an expansion turbine to recover energy from the retentate stream (energy recovery system) is also embedded. For a H2 product purity of 0.90 and H2 recovery of 90%, a minimum total annual cost of 1.764 M$·year-1 was obtained for treating 100 kmol·h-1 with 0.18, 0.16, 0.62, and 0.04 mole fraction of H2, CO, N2, CO2, respectively. The optimal solution selected a combination of compression and vacuum to create the driving force and removed the expansion turbine. Afterwards, this optimal solution was compared in terms of costs, process-unit sizes, and operating conditions to the following two sub-optimal solutions: (i) no vacuum in permeate stream is applied, and (ii) the expansion turbine is included into the process. The comparison showed that the latter (ii) has the highest total annual cost (TAC) value, which is around 7% higher than the former (i) and 24% higher than the found optimal solution. Finally, a sensitivity analysis to investigate the influence of the desired H2 product purity and H2 recovery is presented. Opposite cost-based trade-offs between total membrane area and total electric power were observed with the variations of these two model parameters. This paper contributes a valuable decision-support tool in the process system engineering field for designing, simulating, and optimizing membrane-based systems for H2 separation in a particular industrial case; and the presented optimization results provide useful guidelines to assist in selecting the optimal configuration and operating mode.Fil: Arias, Ana Marisa. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Mores, Patricia Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; ArgentinaFil: Scenna, Nicolas Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; ArgentinaFil: Caballero, José A.. Universidad de Alicante; EspañaFil: Mussati, Sergio Fabian. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaMDPI2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/91830Arias, Ana Marisa; Mores, Patricia Liliana; Scenna, Nicolas Jose; Caballero, José A.; Mussati, Sergio Fabian; et al.; Optimal design of a two-stage membrane system for hydrogen separation in refining processes; MDPI; Processes; 6; 208; 10-2018; 1-232227-97172227-9717CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-9717/6/11/208info:eu-repo/semantics/altIdentifier/doi/10.3390/pr6110208info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:08Zoai:ri.conicet.gov.ar:11336/91830instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:09.137CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Optimal design of a two-stage membrane system for hydrogen separation in refining processes
title Optimal design of a two-stage membrane system for hydrogen separation in refining processes
spellingShingle Optimal design of a two-stage membrane system for hydrogen separation in refining processes
Arias, Ana Marisa
DESIGN
GAMS
H2 SEPARATION
MULTI-STAGE MEMBRANE SYSTEM
NLP
OPERATION
SIMULTANEOUS OPTIMIZATION
title_short Optimal design of a two-stage membrane system for hydrogen separation in refining processes
title_full Optimal design of a two-stage membrane system for hydrogen separation in refining processes
title_fullStr Optimal design of a two-stage membrane system for hydrogen separation in refining processes
title_full_unstemmed Optimal design of a two-stage membrane system for hydrogen separation in refining processes
title_sort Optimal design of a two-stage membrane system for hydrogen separation in refining processes
dc.creator.none.fl_str_mv Arias, Ana Marisa
Mores, Patricia Liliana
Scenna, Nicolas Jose
Caballero, José A.
Mussati, Sergio Fabian
Mussati, Miguel Ceferino
author Arias, Ana Marisa
author_facet Arias, Ana Marisa
Mores, Patricia Liliana
Scenna, Nicolas Jose
Caballero, José A.
Mussati, Sergio Fabian
Mussati, Miguel Ceferino
author_role author
author2 Mores, Patricia Liliana
Scenna, Nicolas Jose
Caballero, José A.
Mussati, Sergio Fabian
Mussati, Miguel Ceferino
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv DESIGN
GAMS
H2 SEPARATION
MULTI-STAGE MEMBRANE SYSTEM
NLP
OPERATION
SIMULTANEOUS OPTIMIZATION
topic DESIGN
GAMS
H2 SEPARATION
MULTI-STAGE MEMBRANE SYSTEM
NLP
OPERATION
SIMULTANEOUS OPTIMIZATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This paper fits into the process system engineering field by addressing the optimization of a two-stage membrane system for H2 separation in refinery processes. To this end, a nonlinear mathematical programming (NLP) model is developed to simultaneously optimize the size of each membrane stage (membrane area, heat transfer area, and installed power for compressors and vacuum pumps) and operating conditions (flow rates, pressures, temperatures, and compositions) to achieve desired target levels of H2 product purity and H2 recovery at a minimum total annual cost. Optimal configuration and process design are obtained from a model which embeds different operating modes and process configurations. For instance, the following candidate ways to create the driving force across the membrane are embedded: (a) compression of both feed and/or permeate streams, or (b) vacuum application in permeate streams, or (c) a combination of (a) and (b). In addition, the potential selection of an expansion turbine to recover energy from the retentate stream (energy recovery system) is also embedded. For a H2 product purity of 0.90 and H2 recovery of 90%, a minimum total annual cost of 1.764 M$·year-1 was obtained for treating 100 kmol·h-1 with 0.18, 0.16, 0.62, and 0.04 mole fraction of H2, CO, N2, CO2, respectively. The optimal solution selected a combination of compression and vacuum to create the driving force and removed the expansion turbine. Afterwards, this optimal solution was compared in terms of costs, process-unit sizes, and operating conditions to the following two sub-optimal solutions: (i) no vacuum in permeate stream is applied, and (ii) the expansion turbine is included into the process. The comparison showed that the latter (ii) has the highest total annual cost (TAC) value, which is around 7% higher than the former (i) and 24% higher than the found optimal solution. Finally, a sensitivity analysis to investigate the influence of the desired H2 product purity and H2 recovery is presented. Opposite cost-based trade-offs between total membrane area and total electric power were observed with the variations of these two model parameters. This paper contributes a valuable decision-support tool in the process system engineering field for designing, simulating, and optimizing membrane-based systems for H2 separation in a particular industrial case; and the presented optimization results provide useful guidelines to assist in selecting the optimal configuration and operating mode.
Fil: Arias, Ana Marisa. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Mores, Patricia Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina
Fil: Scenna, Nicolas Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina
Fil: Caballero, José A.. Universidad de Alicante; España
Fil: Mussati, Sergio Fabian. Universidad Tecnológica Nacional. Regional Rosario. Centro de Aplicaciones Informáticas y Modelado en Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Mussati, Miguel Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
description This paper fits into the process system engineering field by addressing the optimization of a two-stage membrane system for H2 separation in refinery processes. To this end, a nonlinear mathematical programming (NLP) model is developed to simultaneously optimize the size of each membrane stage (membrane area, heat transfer area, and installed power for compressors and vacuum pumps) and operating conditions (flow rates, pressures, temperatures, and compositions) to achieve desired target levels of H2 product purity and H2 recovery at a minimum total annual cost. Optimal configuration and process design are obtained from a model which embeds different operating modes and process configurations. For instance, the following candidate ways to create the driving force across the membrane are embedded: (a) compression of both feed and/or permeate streams, or (b) vacuum application in permeate streams, or (c) a combination of (a) and (b). In addition, the potential selection of an expansion turbine to recover energy from the retentate stream (energy recovery system) is also embedded. For a H2 product purity of 0.90 and H2 recovery of 90%, a minimum total annual cost of 1.764 M$·year-1 was obtained for treating 100 kmol·h-1 with 0.18, 0.16, 0.62, and 0.04 mole fraction of H2, CO, N2, CO2, respectively. The optimal solution selected a combination of compression and vacuum to create the driving force and removed the expansion turbine. Afterwards, this optimal solution was compared in terms of costs, process-unit sizes, and operating conditions to the following two sub-optimal solutions: (i) no vacuum in permeate stream is applied, and (ii) the expansion turbine is included into the process. The comparison showed that the latter (ii) has the highest total annual cost (TAC) value, which is around 7% higher than the former (i) and 24% higher than the found optimal solution. Finally, a sensitivity analysis to investigate the influence of the desired H2 product purity and H2 recovery is presented. Opposite cost-based trade-offs between total membrane area and total electric power were observed with the variations of these two model parameters. This paper contributes a valuable decision-support tool in the process system engineering field for designing, simulating, and optimizing membrane-based systems for H2 separation in a particular industrial case; and the presented optimization results provide useful guidelines to assist in selecting the optimal configuration and operating mode.
publishDate 2018
dc.date.none.fl_str_mv 2018-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/91830
Arias, Ana Marisa; Mores, Patricia Liliana; Scenna, Nicolas Jose; Caballero, José A.; Mussati, Sergio Fabian; et al.; Optimal design of a two-stage membrane system for hydrogen separation in refining processes; MDPI; Processes; 6; 208; 10-2018; 1-23
2227-9717
2227-9717
CONICET Digital
CONICET
url http://hdl.handle.net/11336/91830
identifier_str_mv Arias, Ana Marisa; Mores, Patricia Liliana; Scenna, Nicolas Jose; Caballero, José A.; Mussati, Sergio Fabian; et al.; Optimal design of a two-stage membrane system for hydrogen separation in refining processes; MDPI; Processes; 6; 208; 10-2018; 1-23
2227-9717
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-9717/6/11/208
info:eu-repo/semantics/altIdentifier/doi/10.3390/pr6110208
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613664215138304
score 13.070432