Role of gaseous giants in the dynamical evolution of terrestrial planets and water delivery in the habitable zone
- Autores
- Sánchez, Mariana B.; de Elia, Gonzalo Carlos; Darriba, Luciano Ariel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this research, we study the effects of a single giant planet on the dynamical evolution of water-rich embryos and planetesimals, located beyond the snow line of systems around Sun-like stars, in order to determine what kind of terrestrial-like planets could be formed in the habitable zone (HZ) of these systems. To do this, we carry out N-body simulations of planetary accretion, considering that the gas has been already dissipated from the disc and a single giant planet has been formed beyond the snow line of the system, at 3 au. We find that a giant planet with a value of mass between Saturn mass and Jupiter mass represents a limit from which the amount of water-rich embryos that move inward from beyond the snow line starts to decrease. From this, our research suggests that giant planets more massive than one Jupiter mass become efficient dynamical barriers to inward-migrating water-rich embryos. Moreover, we infer that the number of these embryos that survive in the HZ decreases significantly for systems that host a giant planet more massive than one Jupiter mass. This result has important consequences concerning the formation of terrestrial-like planets in the HZ with very high water content and could provide a selection criterion in the search for potentially habitable exoplanets in systems that host a gaseous giant around solar-type stars.
Fil: Sánchez, Mariana B.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: de Elia, Gonzalo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Darriba, Luciano Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina - Materia
-
ASTROBIOLOGY
METHODS: NUMERICAL
PLANETS AND SATELLITES: DYNAMIC EVOLUTION AND STABILITY
PLANETS AND SATELLITES: FORMATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/82524
Ver los metadatos del registro completo
| id |
CONICETDig_81ed2b5476873bbe9bfab8cce8c87a81 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/82524 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Role of gaseous giants in the dynamical evolution of terrestrial planets and water delivery in the habitable zoneSánchez, Mariana B.de Elia, Gonzalo CarlosDarriba, Luciano ArielASTROBIOLOGYMETHODS: NUMERICALPLANETS AND SATELLITES: DYNAMIC EVOLUTION AND STABILITYPLANETS AND SATELLITES: FORMATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this research, we study the effects of a single giant planet on the dynamical evolution of water-rich embryos and planetesimals, located beyond the snow line of systems around Sun-like stars, in order to determine what kind of terrestrial-like planets could be formed in the habitable zone (HZ) of these systems. To do this, we carry out N-body simulations of planetary accretion, considering that the gas has been already dissipated from the disc and a single giant planet has been formed beyond the snow line of the system, at 3 au. We find that a giant planet with a value of mass between Saturn mass and Jupiter mass represents a limit from which the amount of water-rich embryos that move inward from beyond the snow line starts to decrease. From this, our research suggests that giant planets more massive than one Jupiter mass become efficient dynamical barriers to inward-migrating water-rich embryos. Moreover, we infer that the number of these embryos that survive in the HZ decreases significantly for systems that host a giant planet more massive than one Jupiter mass. This result has important consequences concerning the formation of terrestrial-like planets in the HZ with very high water content and could provide a selection criterion in the search for potentially habitable exoplanets in systems that host a gaseous giant around solar-type stars.Fil: Sánchez, Mariana B.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: de Elia, Gonzalo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Darriba, Luciano Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaOxford University Press2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/82524Sánchez, Mariana B.; de Elia, Gonzalo Carlos; Darriba, Luciano Ariel; Role of gaseous giants in the dynamical evolution of terrestrial planets and water delivery in the habitable zone; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 481; 1; 11-2018; 1281-12890035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/sty2292info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article-abstract/481/1/1281/5094588info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:38:25Zoai:ri.conicet.gov.ar:11336/82524instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:38:25.521CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Role of gaseous giants in the dynamical evolution of terrestrial planets and water delivery in the habitable zone |
| title |
Role of gaseous giants in the dynamical evolution of terrestrial planets and water delivery in the habitable zone |
| spellingShingle |
Role of gaseous giants in the dynamical evolution of terrestrial planets and water delivery in the habitable zone Sánchez, Mariana B. ASTROBIOLOGY METHODS: NUMERICAL PLANETS AND SATELLITES: DYNAMIC EVOLUTION AND STABILITY PLANETS AND SATELLITES: FORMATION |
| title_short |
Role of gaseous giants in the dynamical evolution of terrestrial planets and water delivery in the habitable zone |
| title_full |
Role of gaseous giants in the dynamical evolution of terrestrial planets and water delivery in the habitable zone |
| title_fullStr |
Role of gaseous giants in the dynamical evolution of terrestrial planets and water delivery in the habitable zone |
| title_full_unstemmed |
Role of gaseous giants in the dynamical evolution of terrestrial planets and water delivery in the habitable zone |
| title_sort |
Role of gaseous giants in the dynamical evolution of terrestrial planets and water delivery in the habitable zone |
| dc.creator.none.fl_str_mv |
Sánchez, Mariana B. de Elia, Gonzalo Carlos Darriba, Luciano Ariel |
| author |
Sánchez, Mariana B. |
| author_facet |
Sánchez, Mariana B. de Elia, Gonzalo Carlos Darriba, Luciano Ariel |
| author_role |
author |
| author2 |
de Elia, Gonzalo Carlos Darriba, Luciano Ariel |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
ASTROBIOLOGY METHODS: NUMERICAL PLANETS AND SATELLITES: DYNAMIC EVOLUTION AND STABILITY PLANETS AND SATELLITES: FORMATION |
| topic |
ASTROBIOLOGY METHODS: NUMERICAL PLANETS AND SATELLITES: DYNAMIC EVOLUTION AND STABILITY PLANETS AND SATELLITES: FORMATION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this research, we study the effects of a single giant planet on the dynamical evolution of water-rich embryos and planetesimals, located beyond the snow line of systems around Sun-like stars, in order to determine what kind of terrestrial-like planets could be formed in the habitable zone (HZ) of these systems. To do this, we carry out N-body simulations of planetary accretion, considering that the gas has been already dissipated from the disc and a single giant planet has been formed beyond the snow line of the system, at 3 au. We find that a giant planet with a value of mass between Saturn mass and Jupiter mass represents a limit from which the amount of water-rich embryos that move inward from beyond the snow line starts to decrease. From this, our research suggests that giant planets more massive than one Jupiter mass become efficient dynamical barriers to inward-migrating water-rich embryos. Moreover, we infer that the number of these embryos that survive in the HZ decreases significantly for systems that host a giant planet more massive than one Jupiter mass. This result has important consequences concerning the formation of terrestrial-like planets in the HZ with very high water content and could provide a selection criterion in the search for potentially habitable exoplanets in systems that host a gaseous giant around solar-type stars. Fil: Sánchez, Mariana B.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina Fil: de Elia, Gonzalo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina Fil: Darriba, Luciano Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina |
| description |
In this research, we study the effects of a single giant planet on the dynamical evolution of water-rich embryos and planetesimals, located beyond the snow line of systems around Sun-like stars, in order to determine what kind of terrestrial-like planets could be formed in the habitable zone (HZ) of these systems. To do this, we carry out N-body simulations of planetary accretion, considering that the gas has been already dissipated from the disc and a single giant planet has been formed beyond the snow line of the system, at 3 au. We find that a giant planet with a value of mass between Saturn mass and Jupiter mass represents a limit from which the amount of water-rich embryos that move inward from beyond the snow line starts to decrease. From this, our research suggests that giant planets more massive than one Jupiter mass become efficient dynamical barriers to inward-migrating water-rich embryos. Moreover, we infer that the number of these embryos that survive in the HZ decreases significantly for systems that host a giant planet more massive than one Jupiter mass. This result has important consequences concerning the formation of terrestrial-like planets in the HZ with very high water content and could provide a selection criterion in the search for potentially habitable exoplanets in systems that host a gaseous giant around solar-type stars. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/82524 Sánchez, Mariana B.; de Elia, Gonzalo Carlos; Darriba, Luciano Ariel; Role of gaseous giants in the dynamical evolution of terrestrial planets and water delivery in the habitable zone; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 481; 1; 11-2018; 1281-1289 0035-8711 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/82524 |
| identifier_str_mv |
Sánchez, Mariana B.; de Elia, Gonzalo Carlos; Darriba, Luciano Ariel; Role of gaseous giants in the dynamical evolution of terrestrial planets and water delivery in the habitable zone; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 481; 1; 11-2018; 1281-1289 0035-8711 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/sty2292 info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article-abstract/481/1/1281/5094588 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Oxford University Press |
| publisher.none.fl_str_mv |
Oxford University Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597377680670720 |
| score |
12.976206 |