Evolution of helium triplet transits of close-in gas giants orbiting K dwarfs

Autores
Allan, Andrew P.; Vidotto, Aline A.; Villarreal D'angelo, Carolina Susana; Dos Santos, Leonardo A.; Driessen, Florian A.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Atmospheric escape in exoplanets has traditionally been observed using hydrogen Lyman-α and Hα transmission spectroscopy, but more recent detections have utilized the metastable helium triplet at 1083 nm. Since this feature is accessible from the ground, it offers new possibilities for studying atmospheric escape. Our goal is to understand how the observability of escaping helium evolves during the lifetime of a highly irradiated gas giant. We extend our previous work on 1D self-consistent hydrodynamic escape from hydrogen-only atmospheres as a function of planetary evolution to the first evolution-focused study of escaping hydrogen–helium atmospheres. Additionally, using these novel models we perform helium triplet transmission spectroscopy. We adapt our previous hydrodynamic escape model to now account for both hydrogen and helium heating and cooling processes and simultaneously solve for the population of helium in the triplet state. To account for the planetary evolution, we utilize evolving predictions of planetary radii for a close-in 0.3 MJup gas giant and its received stellar flux in X-ray, hard and soft extreme-ultraviolet (UV), and mid-UV wavelength bins assuming a K-dwarf stellar host. We find that the helium triplet signature diminishes with evolution. Our models suggest that young (≲ 150 Myr), close-in gas giants (∼1 to 2 RJup) should produce helium 1083 nm transit absorptions of ∼ 4 per cent or ∼ 7 per cent, for a slow- or fast-rotating K dwarf, respectively, assuming a 2 per cent helium abundance.
Fil: Allan, Andrew P.. Leiden University; Países Bajos
Fil: Vidotto, Aline A.. Leiden University; Países Bajos
Fil: Villarreal D'angelo, Carolina Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Dos Santos, Leonardo A.. Space Telescope Science Institute; Estados Unidos
Fil: Driessen, Florian A.. Leiden University; Países Bajos
Materia
HYDRODYNAMICS
PLANETS
PLANETS AND SATELLITES: ATMOSPHERES
PLANETS AND SATELLITES: GASEOUS PLANETS
SATELLITES: PHYSICAL EVOLUTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/260209

id CONICETDig_858c21fdd11eaba76bcb7e4e6c139a36
oai_identifier_str oai:ri.conicet.gov.ar:11336/260209
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Evolution of helium triplet transits of close-in gas giants orbiting K dwarfsAllan, Andrew P.Vidotto, Aline A.Villarreal D'angelo, Carolina SusanaDos Santos, Leonardo A.Driessen, Florian A.HYDRODYNAMICSPLANETSPLANETS AND SATELLITES: ATMOSPHERESPLANETS AND SATELLITES: GASEOUS PLANETSSATELLITES: PHYSICAL EVOLUTIONhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1Atmospheric escape in exoplanets has traditionally been observed using hydrogen Lyman-α and Hα transmission spectroscopy, but more recent detections have utilized the metastable helium triplet at 1083 nm. Since this feature is accessible from the ground, it offers new possibilities for studying atmospheric escape. Our goal is to understand how the observability of escaping helium evolves during the lifetime of a highly irradiated gas giant. We extend our previous work on 1D self-consistent hydrodynamic escape from hydrogen-only atmospheres as a function of planetary evolution to the first evolution-focused study of escaping hydrogen–helium atmospheres. Additionally, using these novel models we perform helium triplet transmission spectroscopy. We adapt our previous hydrodynamic escape model to now account for both hydrogen and helium heating and cooling processes and simultaneously solve for the population of helium in the triplet state. To account for the planetary evolution, we utilize evolving predictions of planetary radii for a close-in 0.3 MJup gas giant and its received stellar flux in X-ray, hard and soft extreme-ultraviolet (UV), and mid-UV wavelength bins assuming a K-dwarf stellar host. We find that the helium triplet signature diminishes with evolution. Our models suggest that young (≲ 150 Myr), close-in gas giants (∼1 to 2 RJup) should produce helium 1083 nm transit absorptions of ∼ 4 per cent or ∼ 7 per cent, for a slow- or fast-rotating K dwarf, respectively, assuming a 2 per cent helium abundance.Fil: Allan, Andrew P.. Leiden University; Países BajosFil: Vidotto, Aline A.. Leiden University; Países BajosFil: Villarreal D'angelo, Carolina Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Dos Santos, Leonardo A.. Space Telescope Science Institute; Estados UnidosFil: Driessen, Florian A.. Leiden University; Países BajosWiley Blackwell Publishing, Inc2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/260209Allan, Andrew P.; Vidotto, Aline A.; Villarreal D'angelo, Carolina Susana; Dos Santos, Leonardo A.; Driessen, Florian A.; Evolution of helium triplet transits of close-in gas giants orbiting K dwarfs; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 527; 3; 1-2024; 4657-46760035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stad3432info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:44:55Zoai:ri.conicet.gov.ar:11336/260209instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:44:55.6CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Evolution of helium triplet transits of close-in gas giants orbiting K dwarfs
title Evolution of helium triplet transits of close-in gas giants orbiting K dwarfs
spellingShingle Evolution of helium triplet transits of close-in gas giants orbiting K dwarfs
Allan, Andrew P.
HYDRODYNAMICS
PLANETS
PLANETS AND SATELLITES: ATMOSPHERES
PLANETS AND SATELLITES: GASEOUS PLANETS
SATELLITES: PHYSICAL EVOLUTION
title_short Evolution of helium triplet transits of close-in gas giants orbiting K dwarfs
title_full Evolution of helium triplet transits of close-in gas giants orbiting K dwarfs
title_fullStr Evolution of helium triplet transits of close-in gas giants orbiting K dwarfs
title_full_unstemmed Evolution of helium triplet transits of close-in gas giants orbiting K dwarfs
title_sort Evolution of helium triplet transits of close-in gas giants orbiting K dwarfs
dc.creator.none.fl_str_mv Allan, Andrew P.
Vidotto, Aline A.
Villarreal D'angelo, Carolina Susana
Dos Santos, Leonardo A.
Driessen, Florian A.
author Allan, Andrew P.
author_facet Allan, Andrew P.
Vidotto, Aline A.
Villarreal D'angelo, Carolina Susana
Dos Santos, Leonardo A.
Driessen, Florian A.
author_role author
author2 Vidotto, Aline A.
Villarreal D'angelo, Carolina Susana
Dos Santos, Leonardo A.
Driessen, Florian A.
author2_role author
author
author
author
dc.subject.none.fl_str_mv HYDRODYNAMICS
PLANETS
PLANETS AND SATELLITES: ATMOSPHERES
PLANETS AND SATELLITES: GASEOUS PLANETS
SATELLITES: PHYSICAL EVOLUTION
topic HYDRODYNAMICS
PLANETS
PLANETS AND SATELLITES: ATMOSPHERES
PLANETS AND SATELLITES: GASEOUS PLANETS
SATELLITES: PHYSICAL EVOLUTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.7
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Atmospheric escape in exoplanets has traditionally been observed using hydrogen Lyman-α and Hα transmission spectroscopy, but more recent detections have utilized the metastable helium triplet at 1083 nm. Since this feature is accessible from the ground, it offers new possibilities for studying atmospheric escape. Our goal is to understand how the observability of escaping helium evolves during the lifetime of a highly irradiated gas giant. We extend our previous work on 1D self-consistent hydrodynamic escape from hydrogen-only atmospheres as a function of planetary evolution to the first evolution-focused study of escaping hydrogen–helium atmospheres. Additionally, using these novel models we perform helium triplet transmission spectroscopy. We adapt our previous hydrodynamic escape model to now account for both hydrogen and helium heating and cooling processes and simultaneously solve for the population of helium in the triplet state. To account for the planetary evolution, we utilize evolving predictions of planetary radii for a close-in 0.3 MJup gas giant and its received stellar flux in X-ray, hard and soft extreme-ultraviolet (UV), and mid-UV wavelength bins assuming a K-dwarf stellar host. We find that the helium triplet signature diminishes with evolution. Our models suggest that young (≲ 150 Myr), close-in gas giants (∼1 to 2 RJup) should produce helium 1083 nm transit absorptions of ∼ 4 per cent or ∼ 7 per cent, for a slow- or fast-rotating K dwarf, respectively, assuming a 2 per cent helium abundance.
Fil: Allan, Andrew P.. Leiden University; Países Bajos
Fil: Vidotto, Aline A.. Leiden University; Países Bajos
Fil: Villarreal D'angelo, Carolina Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Dos Santos, Leonardo A.. Space Telescope Science Institute; Estados Unidos
Fil: Driessen, Florian A.. Leiden University; Países Bajos
description Atmospheric escape in exoplanets has traditionally been observed using hydrogen Lyman-α and Hα transmission spectroscopy, but more recent detections have utilized the metastable helium triplet at 1083 nm. Since this feature is accessible from the ground, it offers new possibilities for studying atmospheric escape. Our goal is to understand how the observability of escaping helium evolves during the lifetime of a highly irradiated gas giant. We extend our previous work on 1D self-consistent hydrodynamic escape from hydrogen-only atmospheres as a function of planetary evolution to the first evolution-focused study of escaping hydrogen–helium atmospheres. Additionally, using these novel models we perform helium triplet transmission spectroscopy. We adapt our previous hydrodynamic escape model to now account for both hydrogen and helium heating and cooling processes and simultaneously solve for the population of helium in the triplet state. To account for the planetary evolution, we utilize evolving predictions of planetary radii for a close-in 0.3 MJup gas giant and its received stellar flux in X-ray, hard and soft extreme-ultraviolet (UV), and mid-UV wavelength bins assuming a K-dwarf stellar host. We find that the helium triplet signature diminishes with evolution. Our models suggest that young (≲ 150 Myr), close-in gas giants (∼1 to 2 RJup) should produce helium 1083 nm transit absorptions of ∼ 4 per cent or ∼ 7 per cent, for a slow- or fast-rotating K dwarf, respectively, assuming a 2 per cent helium abundance.
publishDate 2024
dc.date.none.fl_str_mv 2024-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/260209
Allan, Andrew P.; Vidotto, Aline A.; Villarreal D'angelo, Carolina Susana; Dos Santos, Leonardo A.; Driessen, Florian A.; Evolution of helium triplet transits of close-in gas giants orbiting K dwarfs; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 527; 3; 1-2024; 4657-4676
0035-8711
CONICET Digital
CONICET
url http://hdl.handle.net/11336/260209
identifier_str_mv Allan, Andrew P.; Vidotto, Aline A.; Villarreal D'angelo, Carolina Susana; Dos Santos, Leonardo A.; Driessen, Florian A.; Evolution of helium triplet transits of close-in gas giants orbiting K dwarfs; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 527; 3; 1-2024; 4657-4676
0035-8711
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stad3432
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843605988387586048
score 13.001348