Cell Immobilization for production of lactic acid: Biofilms do it naturally

Autores
Dagher, Suzanne F.; Ragout, Alicia Leonor; Siñeriz, Faustino; Bruno Bárcena, José M.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Interest in natural cell immobilization or biofilms for lactic acid fermentation has developed considerably over the last few decades. Many studies report the benefits associated with biofilms as industrial methods for food production and for wastewater treatment, since the formation represents a protective means of microbial growth offering survival advantages to cells in toxic environments. The formation of biofilms is a natural process in which microbial cells adsorb to a support without chemicals or polymers that entrap the cells and is dependent on the reactor environment, microorganism, and characteristics of the support. These unique characteristics enable biofilms to cause chronic infections, disease, food spoilage, and devastating effects as in microbial corrosion. Their distinct resistance to toxicity, high biomass potential, and improved stability over cells in suspension make biofilms a good tool for improving the industrial economics of biological lactic acid production. Lactic acid bacteria and specific filamentous fungi are the main sources of biological lactic acid. Over the past two decades, studies have focused on improving the lactic acid volumetric productivity through reactor design development, new support materials, and improvements in microbial production strains. To illustrate the operational designs applied to the natural immobilization of lactic acid producing microorganisms, this chapter presents the results of a search for optimum parameters and how they are affected by the physical, chemical, and biological variables of the process. We will place particular emphasis upon the relationship between lactic acid productivity attained by various types of reactors, supports, media formulations, and lactic acid producing microorganisms.
Fil: Dagher, Suzanne F.. North Carolina State University; Estados Unidos
Fil: Ragout, Alicia Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Siñeriz, Faustino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Bruno Bárcena, José M.. North Carolina State University; Estados Unidos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/73238

id CONICETDig_812c6b796291286350676184cc13e98c
oai_identifier_str oai:ri.conicet.gov.ar:11336/73238
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cell Immobilization for production of lactic acid: Biofilms do it naturallyDagher, Suzanne F.Ragout, Alicia LeonorSiñeriz, FaustinoBruno Bárcena, José M.https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Interest in natural cell immobilization or biofilms for lactic acid fermentation has developed considerably over the last few decades. Many studies report the benefits associated with biofilms as industrial methods for food production and for wastewater treatment, since the formation represents a protective means of microbial growth offering survival advantages to cells in toxic environments. The formation of biofilms is a natural process in which microbial cells adsorb to a support without chemicals or polymers that entrap the cells and is dependent on the reactor environment, microorganism, and characteristics of the support. These unique characteristics enable biofilms to cause chronic infections, disease, food spoilage, and devastating effects as in microbial corrosion. Their distinct resistance to toxicity, high biomass potential, and improved stability over cells in suspension make biofilms a good tool for improving the industrial economics of biological lactic acid production. Lactic acid bacteria and specific filamentous fungi are the main sources of biological lactic acid. Over the past two decades, studies have focused on improving the lactic acid volumetric productivity through reactor design development, new support materials, and improvements in microbial production strains. To illustrate the operational designs applied to the natural immobilization of lactic acid producing microorganisms, this chapter presents the results of a search for optimum parameters and how they are affected by the physical, chemical, and biological variables of the process. We will place particular emphasis upon the relationship between lactic acid productivity attained by various types of reactors, supports, media formulations, and lactic acid producing microorganisms.Fil: Dagher, Suzanne F.. North Carolina State University; Estados UnidosFil: Ragout, Alicia Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Siñeriz, Faustino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Bruno Bárcena, José M.. North Carolina State University; Estados UnidosElsevier Academic Press Inc2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/73238Dagher, Suzanne F.; Ragout, Alicia Leonor; Siñeriz, Faustino; Bruno Bárcena, José M.; Cell Immobilization for production of lactic acid: Biofilms do it naturally; Elsevier Academic Press Inc; Advances In Applied Microbiology; 71; 12-2010; 113-1480065-2164CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/S0065-2164(10)71005-4info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0065216410710054info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:09Zoai:ri.conicet.gov.ar:11336/73238instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:09.443CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cell Immobilization for production of lactic acid: Biofilms do it naturally
title Cell Immobilization for production of lactic acid: Biofilms do it naturally
spellingShingle Cell Immobilization for production of lactic acid: Biofilms do it naturally
Dagher, Suzanne F.
title_short Cell Immobilization for production of lactic acid: Biofilms do it naturally
title_full Cell Immobilization for production of lactic acid: Biofilms do it naturally
title_fullStr Cell Immobilization for production of lactic acid: Biofilms do it naturally
title_full_unstemmed Cell Immobilization for production of lactic acid: Biofilms do it naturally
title_sort Cell Immobilization for production of lactic acid: Biofilms do it naturally
dc.creator.none.fl_str_mv Dagher, Suzanne F.
Ragout, Alicia Leonor
Siñeriz, Faustino
Bruno Bárcena, José M.
author Dagher, Suzanne F.
author_facet Dagher, Suzanne F.
Ragout, Alicia Leonor
Siñeriz, Faustino
Bruno Bárcena, José M.
author_role author
author2 Ragout, Alicia Leonor
Siñeriz, Faustino
Bruno Bárcena, José M.
author2_role author
author
author
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Interest in natural cell immobilization or biofilms for lactic acid fermentation has developed considerably over the last few decades. Many studies report the benefits associated with biofilms as industrial methods for food production and for wastewater treatment, since the formation represents a protective means of microbial growth offering survival advantages to cells in toxic environments. The formation of biofilms is a natural process in which microbial cells adsorb to a support without chemicals or polymers that entrap the cells and is dependent on the reactor environment, microorganism, and characteristics of the support. These unique characteristics enable biofilms to cause chronic infections, disease, food spoilage, and devastating effects as in microbial corrosion. Their distinct resistance to toxicity, high biomass potential, and improved stability over cells in suspension make biofilms a good tool for improving the industrial economics of biological lactic acid production. Lactic acid bacteria and specific filamentous fungi are the main sources of biological lactic acid. Over the past two decades, studies have focused on improving the lactic acid volumetric productivity through reactor design development, new support materials, and improvements in microbial production strains. To illustrate the operational designs applied to the natural immobilization of lactic acid producing microorganisms, this chapter presents the results of a search for optimum parameters and how they are affected by the physical, chemical, and biological variables of the process. We will place particular emphasis upon the relationship between lactic acid productivity attained by various types of reactors, supports, media formulations, and lactic acid producing microorganisms.
Fil: Dagher, Suzanne F.. North Carolina State University; Estados Unidos
Fil: Ragout, Alicia Leonor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Siñeriz, Faustino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Bruno Bárcena, José M.. North Carolina State University; Estados Unidos
description Interest in natural cell immobilization or biofilms for lactic acid fermentation has developed considerably over the last few decades. Many studies report the benefits associated with biofilms as industrial methods for food production and for wastewater treatment, since the formation represents a protective means of microbial growth offering survival advantages to cells in toxic environments. The formation of biofilms is a natural process in which microbial cells adsorb to a support without chemicals or polymers that entrap the cells and is dependent on the reactor environment, microorganism, and characteristics of the support. These unique characteristics enable biofilms to cause chronic infections, disease, food spoilage, and devastating effects as in microbial corrosion. Their distinct resistance to toxicity, high biomass potential, and improved stability over cells in suspension make biofilms a good tool for improving the industrial economics of biological lactic acid production. Lactic acid bacteria and specific filamentous fungi are the main sources of biological lactic acid. Over the past two decades, studies have focused on improving the lactic acid volumetric productivity through reactor design development, new support materials, and improvements in microbial production strains. To illustrate the operational designs applied to the natural immobilization of lactic acid producing microorganisms, this chapter presents the results of a search for optimum parameters and how they are affected by the physical, chemical, and biological variables of the process. We will place particular emphasis upon the relationship between lactic acid productivity attained by various types of reactors, supports, media formulations, and lactic acid producing microorganisms.
publishDate 2010
dc.date.none.fl_str_mv 2010-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/73238
Dagher, Suzanne F.; Ragout, Alicia Leonor; Siñeriz, Faustino; Bruno Bárcena, José M.; Cell Immobilization for production of lactic acid: Biofilms do it naturally; Elsevier Academic Press Inc; Advances In Applied Microbiology; 71; 12-2010; 113-148
0065-2164
CONICET Digital
CONICET
url http://hdl.handle.net/11336/73238
identifier_str_mv Dagher, Suzanne F.; Ragout, Alicia Leonor; Siñeriz, Faustino; Bruno Bárcena, José M.; Cell Immobilization for production of lactic acid: Biofilms do it naturally; Elsevier Academic Press Inc; Advances In Applied Microbiology; 71; 12-2010; 113-148
0065-2164
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/S0065-2164(10)71005-4
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0065216410710054
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Academic Press Inc
publisher.none.fl_str_mv Elsevier Academic Press Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613169124737024
score 13.070432