QHWM of the orthogonal type Lie subalgebra of the Lie algebra of matrix differential operators on the circle

Autores
Boyallian, Carina; Meinardi, Vanesa Beatriz
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we classify the irreducible quasifinite highest weight modules of the orthogonal Lie subalgebra of the Lie algebra of matrix differential operators on the circle. We also realize them in terms of the representation theory of the complex Lie algebra g m of infinite matrices with a finite number of nonzero diagonals with entries in the algebra of truncated polynomials and the corresponding subalgebras of type B and D.
Fil: Boyallian, Carina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Meinardi, Vanesa Beatriz. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Materia
REPRESENTACIONES
CUASIFINITAS
PESO MAXIMO
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/278521

id CONICETDig_77229d3b7466c8ac7fcb24b0fd54a3ce
oai_identifier_str oai:ri.conicet.gov.ar:11336/278521
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling QHWM of the orthogonal type Lie subalgebra of the Lie algebra of matrix differential operators on the circleBoyallian, CarinaMeinardi, Vanesa BeatrizREPRESENTACIONESCUASIFINITASPESO MAXIMOhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we classify the irreducible quasifinite highest weight modules of the orthogonal Lie subalgebra of the Lie algebra of matrix differential operators on the circle. We also realize them in terms of the representation theory of the complex Lie algebra g m of infinite matrices with a finite number of nonzero diagonals with entries in the algebra of truncated polynomials and the corresponding subalgebras of type B and D.Fil: Boyallian, Carina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Meinardi, Vanesa Beatriz. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaAmerican Institute of Physics2010-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/278521Boyallian, Carina; Meinardi, Vanesa Beatriz; QHWM of the orthogonal type Lie subalgebra of the Lie algebra of matrix differential operators on the circle; American Institute of Physics; Journal of Mathematical Physics; 51; 9-2010; 12-360022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.3483126info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-06T13:28:40Zoai:ri.conicet.gov.ar:11336/278521instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-06 13:28:40.835CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv QHWM of the orthogonal type Lie subalgebra of the Lie algebra of matrix differential operators on the circle
title QHWM of the orthogonal type Lie subalgebra of the Lie algebra of matrix differential operators on the circle
spellingShingle QHWM of the orthogonal type Lie subalgebra of the Lie algebra of matrix differential operators on the circle
Boyallian, Carina
REPRESENTACIONES
CUASIFINITAS
PESO MAXIMO
title_short QHWM of the orthogonal type Lie subalgebra of the Lie algebra of matrix differential operators on the circle
title_full QHWM of the orthogonal type Lie subalgebra of the Lie algebra of matrix differential operators on the circle
title_fullStr QHWM of the orthogonal type Lie subalgebra of the Lie algebra of matrix differential operators on the circle
title_full_unstemmed QHWM of the orthogonal type Lie subalgebra of the Lie algebra of matrix differential operators on the circle
title_sort QHWM of the orthogonal type Lie subalgebra of the Lie algebra of matrix differential operators on the circle
dc.creator.none.fl_str_mv Boyallian, Carina
Meinardi, Vanesa Beatriz
author Boyallian, Carina
author_facet Boyallian, Carina
Meinardi, Vanesa Beatriz
author_role author
author2 Meinardi, Vanesa Beatriz
author2_role author
dc.subject.none.fl_str_mv REPRESENTACIONES
CUASIFINITAS
PESO MAXIMO
topic REPRESENTACIONES
CUASIFINITAS
PESO MAXIMO
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we classify the irreducible quasifinite highest weight modules of the orthogonal Lie subalgebra of the Lie algebra of matrix differential operators on the circle. We also realize them in terms of the representation theory of the complex Lie algebra g m of infinite matrices with a finite number of nonzero diagonals with entries in the algebra of truncated polynomials and the corresponding subalgebras of type B and D.
Fil: Boyallian, Carina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Meinardi, Vanesa Beatriz. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
description In this paper we classify the irreducible quasifinite highest weight modules of the orthogonal Lie subalgebra of the Lie algebra of matrix differential operators on the circle. We also realize them in terms of the representation theory of the complex Lie algebra g m of infinite matrices with a finite number of nonzero diagonals with entries in the algebra of truncated polynomials and the corresponding subalgebras of type B and D.
publishDate 2010
dc.date.none.fl_str_mv 2010-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/278521
Boyallian, Carina; Meinardi, Vanesa Beatriz; QHWM of the orthogonal type Lie subalgebra of the Lie algebra of matrix differential operators on the circle; American Institute of Physics; Journal of Mathematical Physics; 51; 9-2010; 12-36
0022-2488
CONICET Digital
CONICET
url http://hdl.handle.net/11336/278521
identifier_str_mv Boyallian, Carina; Meinardi, Vanesa Beatriz; QHWM of the orthogonal type Lie subalgebra of the Lie algebra of matrix differential operators on the circle; American Institute of Physics; Journal of Mathematical Physics; 51; 9-2010; 12-36
0022-2488
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3483126
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1856403523671949312
score 12.595271