Effects of Fracture Connectivity on Rayleigh Wave Dispersion
- Autores
- Quiroga, Gabriel E.; Rubino, Jorge German; Solazzi, Santiago Gabriel; Barbosa, Nicolás D.; Holliger, Klaus
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Passive seismic characterization is an environmentally friendly method to estimate the seismic properties of the subsurface. Among its applications, we find the monitoring of geothermal reservoirs. One key characteristic to ensure a productive management of these reservoirs is the degree of fracture connectivity and its evolution, as it affects the flow of fluids within the formation. In this work, we explore the effects of fracture connectivity on Rayleigh wave velocity dispersion accounting for wave-induced fluid pressure diffusion (FPD) effects. To this end, we consider a stratified reservoir model with a fractured water-bearing formation. For the stochastic fracture network prevailing in this formation, we consider varying levels of fracture density and connectivity. A numerical upscaling procedure that accounts for FPD effects is employed to determine the corresponding body wave velocities. We use a Monte-Carlo-type approach to obtain these velocities and incorporate them in the considered fractured reservoir model to assess the sensitivity of Rayleigh wave velocity dispersion to fracture connectivity. Our results show that Rayleigh wave phase and group velocities exhibit a significant sensitivity to the degree of fracture connectivity, which is mainly due to a reduction of the stiffening effect of the fluid residing in connected fractures in response to wave-induced FPD. These effects cannot be accounted for by classical elastic approaches. This suggests that Rayleigh wave velocity changes, which are commonly associated with changes in fracture density, may also be related to changes in interconnectivity of pre-existing or newly generated fractures.
Fil: Quiroga, Gabriel E.. Universite de Lausanne; Suiza
Fil: Rubino, Jorge German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Solazzi, Santiago Gabriel. Universite de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Barbosa, Nicolás D.. Universite de Lausanne; Suiza
Fil: Holliger, Klaus. Universite de Lausanne; Suiza - Materia
-
FRACTURE CONNECTIVITY
POROELASTICITY
SURFACE WAVES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/216373
Ver los metadatos del registro completo
| id |
CONICETDig_8025f45c10f2b2edd940a77d479a1457 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/216373 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Effects of Fracture Connectivity on Rayleigh Wave DispersionQuiroga, Gabriel E.Rubino, Jorge GermanSolazzi, Santiago GabrielBarbosa, Nicolás D.Holliger, KlausFRACTURE CONNECTIVITYPOROELASTICITYSURFACE WAVEShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Passive seismic characterization is an environmentally friendly method to estimate the seismic properties of the subsurface. Among its applications, we find the monitoring of geothermal reservoirs. One key characteristic to ensure a productive management of these reservoirs is the degree of fracture connectivity and its evolution, as it affects the flow of fluids within the formation. In this work, we explore the effects of fracture connectivity on Rayleigh wave velocity dispersion accounting for wave-induced fluid pressure diffusion (FPD) effects. To this end, we consider a stratified reservoir model with a fractured water-bearing formation. For the stochastic fracture network prevailing in this formation, we consider varying levels of fracture density and connectivity. A numerical upscaling procedure that accounts for FPD effects is employed to determine the corresponding body wave velocities. We use a Monte-Carlo-type approach to obtain these velocities and incorporate them in the considered fractured reservoir model to assess the sensitivity of Rayleigh wave velocity dispersion to fracture connectivity. Our results show that Rayleigh wave phase and group velocities exhibit a significant sensitivity to the degree of fracture connectivity, which is mainly due to a reduction of the stiffening effect of the fluid residing in connected fractures in response to wave-induced FPD. These effects cannot be accounted for by classical elastic approaches. This suggests that Rayleigh wave velocity changes, which are commonly associated with changes in fracture density, may also be related to changes in interconnectivity of pre-existing or newly generated fractures.Fil: Quiroga, Gabriel E.. Universite de Lausanne; SuizaFil: Rubino, Jorge German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Solazzi, Santiago Gabriel. Universite de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barbosa, Nicolás D.. Universite de Lausanne; SuizaFil: Holliger, Klaus. Universite de Lausanne; SuizaWiley2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216373Quiroga, Gabriel E.; Rubino, Jorge German; Solazzi, Santiago Gabriel; Barbosa, Nicolás D.; Holliger, Klaus; Effects of Fracture Connectivity on Rayleigh Wave Dispersion; Wiley; Journal of Geophysical Research: Solid Earth; 127; 3; 3-2022; 1-202169-93132169-9356CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1029/2021JB022847info:eu-repo/semantics/altIdentifier/doi/10.1029/2021JB022847info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:37:41Zoai:ri.conicet.gov.ar:11336/216373instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:37:42.19CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Effects of Fracture Connectivity on Rayleigh Wave Dispersion |
| title |
Effects of Fracture Connectivity on Rayleigh Wave Dispersion |
| spellingShingle |
Effects of Fracture Connectivity on Rayleigh Wave Dispersion Quiroga, Gabriel E. FRACTURE CONNECTIVITY POROELASTICITY SURFACE WAVES |
| title_short |
Effects of Fracture Connectivity on Rayleigh Wave Dispersion |
| title_full |
Effects of Fracture Connectivity on Rayleigh Wave Dispersion |
| title_fullStr |
Effects of Fracture Connectivity on Rayleigh Wave Dispersion |
| title_full_unstemmed |
Effects of Fracture Connectivity on Rayleigh Wave Dispersion |
| title_sort |
Effects of Fracture Connectivity on Rayleigh Wave Dispersion |
| dc.creator.none.fl_str_mv |
Quiroga, Gabriel E. Rubino, Jorge German Solazzi, Santiago Gabriel Barbosa, Nicolás D. Holliger, Klaus |
| author |
Quiroga, Gabriel E. |
| author_facet |
Quiroga, Gabriel E. Rubino, Jorge German Solazzi, Santiago Gabriel Barbosa, Nicolás D. Holliger, Klaus |
| author_role |
author |
| author2 |
Rubino, Jorge German Solazzi, Santiago Gabriel Barbosa, Nicolás D. Holliger, Klaus |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
FRACTURE CONNECTIVITY POROELASTICITY SURFACE WAVES |
| topic |
FRACTURE CONNECTIVITY POROELASTICITY SURFACE WAVES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Passive seismic characterization is an environmentally friendly method to estimate the seismic properties of the subsurface. Among its applications, we find the monitoring of geothermal reservoirs. One key characteristic to ensure a productive management of these reservoirs is the degree of fracture connectivity and its evolution, as it affects the flow of fluids within the formation. In this work, we explore the effects of fracture connectivity on Rayleigh wave velocity dispersion accounting for wave-induced fluid pressure diffusion (FPD) effects. To this end, we consider a stratified reservoir model with a fractured water-bearing formation. For the stochastic fracture network prevailing in this formation, we consider varying levels of fracture density and connectivity. A numerical upscaling procedure that accounts for FPD effects is employed to determine the corresponding body wave velocities. We use a Monte-Carlo-type approach to obtain these velocities and incorporate them in the considered fractured reservoir model to assess the sensitivity of Rayleigh wave velocity dispersion to fracture connectivity. Our results show that Rayleigh wave phase and group velocities exhibit a significant sensitivity to the degree of fracture connectivity, which is mainly due to a reduction of the stiffening effect of the fluid residing in connected fractures in response to wave-induced FPD. These effects cannot be accounted for by classical elastic approaches. This suggests that Rayleigh wave velocity changes, which are commonly associated with changes in fracture density, may also be related to changes in interconnectivity of pre-existing or newly generated fractures. Fil: Quiroga, Gabriel E.. Universite de Lausanne; Suiza Fil: Rubino, Jorge German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Solazzi, Santiago Gabriel. Universite de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Barbosa, Nicolás D.. Universite de Lausanne; Suiza Fil: Holliger, Klaus. Universite de Lausanne; Suiza |
| description |
Passive seismic characterization is an environmentally friendly method to estimate the seismic properties of the subsurface. Among its applications, we find the monitoring of geothermal reservoirs. One key characteristic to ensure a productive management of these reservoirs is the degree of fracture connectivity and its evolution, as it affects the flow of fluids within the formation. In this work, we explore the effects of fracture connectivity on Rayleigh wave velocity dispersion accounting for wave-induced fluid pressure diffusion (FPD) effects. To this end, we consider a stratified reservoir model with a fractured water-bearing formation. For the stochastic fracture network prevailing in this formation, we consider varying levels of fracture density and connectivity. A numerical upscaling procedure that accounts for FPD effects is employed to determine the corresponding body wave velocities. We use a Monte-Carlo-type approach to obtain these velocities and incorporate them in the considered fractured reservoir model to assess the sensitivity of Rayleigh wave velocity dispersion to fracture connectivity. Our results show that Rayleigh wave phase and group velocities exhibit a significant sensitivity to the degree of fracture connectivity, which is mainly due to a reduction of the stiffening effect of the fluid residing in connected fractures in response to wave-induced FPD. These effects cannot be accounted for by classical elastic approaches. This suggests that Rayleigh wave velocity changes, which are commonly associated with changes in fracture density, may also be related to changes in interconnectivity of pre-existing or newly generated fractures. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/216373 Quiroga, Gabriel E.; Rubino, Jorge German; Solazzi, Santiago Gabriel; Barbosa, Nicolás D.; Holliger, Klaus; Effects of Fracture Connectivity on Rayleigh Wave Dispersion; Wiley; Journal of Geophysical Research: Solid Earth; 127; 3; 3-2022; 1-20 2169-9313 2169-9356 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/216373 |
| identifier_str_mv |
Quiroga, Gabriel E.; Rubino, Jorge German; Solazzi, Santiago Gabriel; Barbosa, Nicolás D.; Holliger, Klaus; Effects of Fracture Connectivity on Rayleigh Wave Dispersion; Wiley; Journal of Geophysical Research: Solid Earth; 127; 3; 3-2022; 1-20 2169-9313 2169-9356 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1029/2021JB022847 info:eu-repo/semantics/altIdentifier/doi/10.1029/2021JB022847 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Wiley |
| publisher.none.fl_str_mv |
Wiley |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597331331514368 |
| score |
12.976206 |