Effects of Fracture Connectivity on Rayleigh Wave Dispersion

Autores
Quiroga, Gabriel E.; Rubino, Jorge German; Solazzi, Santiago Gabriel; Barbosa, Nicolás D.; Holliger, Klaus
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Passive seismic characterization is an environmentally friendly method to estimate the seismic properties of the subsurface. Among its applications, we find the monitoring of geothermal reservoirs. One key characteristic to ensure a productive management of these reservoirs is the degree of fracture connectivity and its evolution, as it affects the flow of fluids within the formation. In this work, we explore the effects of fracture connectivity on Rayleigh wave velocity dispersion accounting for wave-induced fluid pressure diffusion (FPD) effects. To this end, we consider a stratified reservoir model with a fractured water-bearing formation. For the stochastic fracture network prevailing in this formation, we consider varying levels of fracture density and connectivity. A numerical upscaling procedure that accounts for FPD effects is employed to determine the corresponding body wave velocities. We use a Monte-Carlo-type approach to obtain these velocities and incorporate them in the considered fractured reservoir model to assess the sensitivity of Rayleigh wave velocity dispersion to fracture connectivity. Our results show that Rayleigh wave phase and group velocities exhibit a significant sensitivity to the degree of fracture connectivity, which is mainly due to a reduction of the stiffening effect of the fluid residing in connected fractures in response to wave-induced FPD. These effects cannot be accounted for by classical elastic approaches. This suggests that Rayleigh wave velocity changes, which are commonly associated with changes in fracture density, may also be related to changes in interconnectivity of pre-existing or newly generated fractures.
Fil: Quiroga, Gabriel E.. Universite de Lausanne; Suiza
Fil: Rubino, Jorge German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Solazzi, Santiago Gabriel. Universite de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Barbosa, Nicolás D.. Universite de Lausanne; Suiza
Fil: Holliger, Klaus. Universite de Lausanne; Suiza
Materia
FRACTURE CONNECTIVITY
POROELASTICITY
SURFACE WAVES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/216373

id CONICETDig_8025f45c10f2b2edd940a77d479a1457
oai_identifier_str oai:ri.conicet.gov.ar:11336/216373
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effects of Fracture Connectivity on Rayleigh Wave DispersionQuiroga, Gabriel E.Rubino, Jorge GermanSolazzi, Santiago GabrielBarbosa, Nicolás D.Holliger, KlausFRACTURE CONNECTIVITYPOROELASTICITYSURFACE WAVEShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Passive seismic characterization is an environmentally friendly method to estimate the seismic properties of the subsurface. Among its applications, we find the monitoring of geothermal reservoirs. One key characteristic to ensure a productive management of these reservoirs is the degree of fracture connectivity and its evolution, as it affects the flow of fluids within the formation. In this work, we explore the effects of fracture connectivity on Rayleigh wave velocity dispersion accounting for wave-induced fluid pressure diffusion (FPD) effects. To this end, we consider a stratified reservoir model with a fractured water-bearing formation. For the stochastic fracture network prevailing in this formation, we consider varying levels of fracture density and connectivity. A numerical upscaling procedure that accounts for FPD effects is employed to determine the corresponding body wave velocities. We use a Monte-Carlo-type approach to obtain these velocities and incorporate them in the considered fractured reservoir model to assess the sensitivity of Rayleigh wave velocity dispersion to fracture connectivity. Our results show that Rayleigh wave phase and group velocities exhibit a significant sensitivity to the degree of fracture connectivity, which is mainly due to a reduction of the stiffening effect of the fluid residing in connected fractures in response to wave-induced FPD. These effects cannot be accounted for by classical elastic approaches. This suggests that Rayleigh wave velocity changes, which are commonly associated with changes in fracture density, may also be related to changes in interconnectivity of pre-existing or newly generated fractures.Fil: Quiroga, Gabriel E.. Universite de Lausanne; SuizaFil: Rubino, Jorge German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Solazzi, Santiago Gabriel. Universite de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barbosa, Nicolás D.. Universite de Lausanne; SuizaFil: Holliger, Klaus. Universite de Lausanne; SuizaWiley2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216373Quiroga, Gabriel E.; Rubino, Jorge German; Solazzi, Santiago Gabriel; Barbosa, Nicolás D.; Holliger, Klaus; Effects of Fracture Connectivity on Rayleigh Wave Dispersion; Wiley; Journal of Geophysical Research: Solid Earth; 127; 3; 3-2022; 1-202169-93132169-9356CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1029/2021JB022847info:eu-repo/semantics/altIdentifier/doi/10.1029/2021JB022847info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:37:41Zoai:ri.conicet.gov.ar:11336/216373instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:37:42.19CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effects of Fracture Connectivity on Rayleigh Wave Dispersion
title Effects of Fracture Connectivity on Rayleigh Wave Dispersion
spellingShingle Effects of Fracture Connectivity on Rayleigh Wave Dispersion
Quiroga, Gabriel E.
FRACTURE CONNECTIVITY
POROELASTICITY
SURFACE WAVES
title_short Effects of Fracture Connectivity on Rayleigh Wave Dispersion
title_full Effects of Fracture Connectivity on Rayleigh Wave Dispersion
title_fullStr Effects of Fracture Connectivity on Rayleigh Wave Dispersion
title_full_unstemmed Effects of Fracture Connectivity on Rayleigh Wave Dispersion
title_sort Effects of Fracture Connectivity on Rayleigh Wave Dispersion
dc.creator.none.fl_str_mv Quiroga, Gabriel E.
Rubino, Jorge German
Solazzi, Santiago Gabriel
Barbosa, Nicolás D.
Holliger, Klaus
author Quiroga, Gabriel E.
author_facet Quiroga, Gabriel E.
Rubino, Jorge German
Solazzi, Santiago Gabriel
Barbosa, Nicolás D.
Holliger, Klaus
author_role author
author2 Rubino, Jorge German
Solazzi, Santiago Gabriel
Barbosa, Nicolás D.
Holliger, Klaus
author2_role author
author
author
author
dc.subject.none.fl_str_mv FRACTURE CONNECTIVITY
POROELASTICITY
SURFACE WAVES
topic FRACTURE CONNECTIVITY
POROELASTICITY
SURFACE WAVES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Passive seismic characterization is an environmentally friendly method to estimate the seismic properties of the subsurface. Among its applications, we find the monitoring of geothermal reservoirs. One key characteristic to ensure a productive management of these reservoirs is the degree of fracture connectivity and its evolution, as it affects the flow of fluids within the formation. In this work, we explore the effects of fracture connectivity on Rayleigh wave velocity dispersion accounting for wave-induced fluid pressure diffusion (FPD) effects. To this end, we consider a stratified reservoir model with a fractured water-bearing formation. For the stochastic fracture network prevailing in this formation, we consider varying levels of fracture density and connectivity. A numerical upscaling procedure that accounts for FPD effects is employed to determine the corresponding body wave velocities. We use a Monte-Carlo-type approach to obtain these velocities and incorporate them in the considered fractured reservoir model to assess the sensitivity of Rayleigh wave velocity dispersion to fracture connectivity. Our results show that Rayleigh wave phase and group velocities exhibit a significant sensitivity to the degree of fracture connectivity, which is mainly due to a reduction of the stiffening effect of the fluid residing in connected fractures in response to wave-induced FPD. These effects cannot be accounted for by classical elastic approaches. This suggests that Rayleigh wave velocity changes, which are commonly associated with changes in fracture density, may also be related to changes in interconnectivity of pre-existing or newly generated fractures.
Fil: Quiroga, Gabriel E.. Universite de Lausanne; Suiza
Fil: Rubino, Jorge German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Solazzi, Santiago Gabriel. Universite de Lausanne; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Barbosa, Nicolás D.. Universite de Lausanne; Suiza
Fil: Holliger, Klaus. Universite de Lausanne; Suiza
description Passive seismic characterization is an environmentally friendly method to estimate the seismic properties of the subsurface. Among its applications, we find the monitoring of geothermal reservoirs. One key characteristic to ensure a productive management of these reservoirs is the degree of fracture connectivity and its evolution, as it affects the flow of fluids within the formation. In this work, we explore the effects of fracture connectivity on Rayleigh wave velocity dispersion accounting for wave-induced fluid pressure diffusion (FPD) effects. To this end, we consider a stratified reservoir model with a fractured water-bearing formation. For the stochastic fracture network prevailing in this formation, we consider varying levels of fracture density and connectivity. A numerical upscaling procedure that accounts for FPD effects is employed to determine the corresponding body wave velocities. We use a Monte-Carlo-type approach to obtain these velocities and incorporate them in the considered fractured reservoir model to assess the sensitivity of Rayleigh wave velocity dispersion to fracture connectivity. Our results show that Rayleigh wave phase and group velocities exhibit a significant sensitivity to the degree of fracture connectivity, which is mainly due to a reduction of the stiffening effect of the fluid residing in connected fractures in response to wave-induced FPD. These effects cannot be accounted for by classical elastic approaches. This suggests that Rayleigh wave velocity changes, which are commonly associated with changes in fracture density, may also be related to changes in interconnectivity of pre-existing or newly generated fractures.
publishDate 2022
dc.date.none.fl_str_mv 2022-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/216373
Quiroga, Gabriel E.; Rubino, Jorge German; Solazzi, Santiago Gabriel; Barbosa, Nicolás D.; Holliger, Klaus; Effects of Fracture Connectivity on Rayleigh Wave Dispersion; Wiley; Journal of Geophysical Research: Solid Earth; 127; 3; 3-2022; 1-20
2169-9313
2169-9356
CONICET Digital
CONICET
url http://hdl.handle.net/11336/216373
identifier_str_mv Quiroga, Gabriel E.; Rubino, Jorge German; Solazzi, Santiago Gabriel; Barbosa, Nicolás D.; Holliger, Klaus; Effects of Fracture Connectivity on Rayleigh Wave Dispersion; Wiley; Journal of Geophysical Research: Solid Earth; 127; 3; 3-2022; 1-20
2169-9313
2169-9356
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1029/2021JB022847
info:eu-repo/semantics/altIdentifier/doi/10.1029/2021JB022847
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848597331331514368
score 12.976206