Non-linear diffusion and power law properties of heterogeneous systems: Application to financial time series
- Autores
- Fuentes, Miguel Angel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, we show that it is possible to obtain important ubiquitous physical characteristics when an aggregation of many systems is taken into account. We discuss the possibility of obtaining not only an anomalous diffusion process, but also a Non-Linear diffusion equation, that leads to a probability distribution, when using a set of non-Markovian processes. This probability distribution shows a power law behavior in the structure of its tails. It also reflects the anomalous transport characteristics of the ensemble of particles. This ubiquitous behavior, with a power law in the diffusive transport and the structure of the probability distribution, is related to a fast fluctuating phenomenon presented in the noise parameter. We discuss all the previous results using a financial time series example.
Fil: Fuentes, Miguel Angel. Instituto de Investigaciones Filosóficas - Sadaf; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
COMPLEX SYSTEMS
NON LINEAR EVOLUTION EQUATIONS
POWER LAW - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/96727
Ver los metadatos del registro completo
id |
CONICETDig_8010e92f0a1bb709f253f278d22835db |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/96727 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Non-linear diffusion and power law properties of heterogeneous systems: Application to financial time seriesFuentes, Miguel AngelCOMPLEX SYSTEMSNON LINEAR EVOLUTION EQUATIONSPOWER LAWhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this work, we show that it is possible to obtain important ubiquitous physical characteristics when an aggregation of many systems is taken into account. We discuss the possibility of obtaining not only an anomalous diffusion process, but also a Non-Linear diffusion equation, that leads to a probability distribution, when using a set of non-Markovian processes. This probability distribution shows a power law behavior in the structure of its tails. It also reflects the anomalous transport characteristics of the ensemble of particles. This ubiquitous behavior, with a power law in the diffusive transport and the structure of the probability distribution, is related to a fast fluctuating phenomenon presented in the noise parameter. We discuss all the previous results using a financial time series example.Fil: Fuentes, Miguel Angel. Instituto de Investigaciones Filosóficas - Sadaf; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMolecular Diversity Preservation International2018-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96727Fuentes, Miguel Angel; Non-linear diffusion and power law properties of heterogeneous systems: Application to financial time series; Molecular Diversity Preservation International; Entropy; 20; 9; 8-2018; 1-81099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/e20090649info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/20/9/649info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:47Zoai:ri.conicet.gov.ar:11336/96727instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:47.552CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Non-linear diffusion and power law properties of heterogeneous systems: Application to financial time series |
title |
Non-linear diffusion and power law properties of heterogeneous systems: Application to financial time series |
spellingShingle |
Non-linear diffusion and power law properties of heterogeneous systems: Application to financial time series Fuentes, Miguel Angel COMPLEX SYSTEMS NON LINEAR EVOLUTION EQUATIONS POWER LAW |
title_short |
Non-linear diffusion and power law properties of heterogeneous systems: Application to financial time series |
title_full |
Non-linear diffusion and power law properties of heterogeneous systems: Application to financial time series |
title_fullStr |
Non-linear diffusion and power law properties of heterogeneous systems: Application to financial time series |
title_full_unstemmed |
Non-linear diffusion and power law properties of heterogeneous systems: Application to financial time series |
title_sort |
Non-linear diffusion and power law properties of heterogeneous systems: Application to financial time series |
dc.creator.none.fl_str_mv |
Fuentes, Miguel Angel |
author |
Fuentes, Miguel Angel |
author_facet |
Fuentes, Miguel Angel |
author_role |
author |
dc.subject.none.fl_str_mv |
COMPLEX SYSTEMS NON LINEAR EVOLUTION EQUATIONS POWER LAW |
topic |
COMPLEX SYSTEMS NON LINEAR EVOLUTION EQUATIONS POWER LAW |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work, we show that it is possible to obtain important ubiquitous physical characteristics when an aggregation of many systems is taken into account. We discuss the possibility of obtaining not only an anomalous diffusion process, but also a Non-Linear diffusion equation, that leads to a probability distribution, when using a set of non-Markovian processes. This probability distribution shows a power law behavior in the structure of its tails. It also reflects the anomalous transport characteristics of the ensemble of particles. This ubiquitous behavior, with a power law in the diffusive transport and the structure of the probability distribution, is related to a fast fluctuating phenomenon presented in the noise parameter. We discuss all the previous results using a financial time series example. Fil: Fuentes, Miguel Angel. Instituto de Investigaciones Filosóficas - Sadaf; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this work, we show that it is possible to obtain important ubiquitous physical characteristics when an aggregation of many systems is taken into account. We discuss the possibility of obtaining not only an anomalous diffusion process, but also a Non-Linear diffusion equation, that leads to a probability distribution, when using a set of non-Markovian processes. This probability distribution shows a power law behavior in the structure of its tails. It also reflects the anomalous transport characteristics of the ensemble of particles. This ubiquitous behavior, with a power law in the diffusive transport and the structure of the probability distribution, is related to a fast fluctuating phenomenon presented in the noise parameter. We discuss all the previous results using a financial time series example. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/96727 Fuentes, Miguel Angel; Non-linear diffusion and power law properties of heterogeneous systems: Application to financial time series; Molecular Diversity Preservation International; Entropy; 20; 9; 8-2018; 1-8 1099-4300 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/96727 |
identifier_str_mv |
Fuentes, Miguel Angel; Non-linear diffusion and power law properties of heterogeneous systems: Application to financial time series; Molecular Diversity Preservation International; Entropy; 20; 9; 8-2018; 1-8 1099-4300 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/e20090649 info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/20/9/649 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614365077045248 |
score |
13.070432 |