Predicting Effortful Control at 3 Years of Age from Measures of Attention and Home Environment in Infancy: A Machine Learning Approach
- Autores
- Musso, Mariel Fernanda; Moyano, Sebastián; Rico Picó, Josué; Conejero, Ángela; Ballesteros Duperón, María Ángeles; Cascallar, Eduardo; Rueda, María Rosario
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Effortful control (EC) is a dimension of temperament that encompass individual differences in self-regulation and the control of reactivity. Much research suggests that EC has a strong foundation on the development of executive attention, but increasing evidence also shows a significant contribution of the rearing environment to individual differences in EC. The aim of the current study was to predict the development of EC at 36 months of age from early attentional and environmental measures taken in infancy using a machine learning approach. A sample of 78 infants participated in a longitudinal study running three waves of data collection at 6, 9, and 36 months of age. Attentional tasks were administered at 6 months of age, with two additional measures (i.e., one attentional measure and another self-restraint measure) being collected at 9 months of age. Parents reported household environment variables during wave 1, and their child’s EC at 36 months. A machine learning algorithm was implemented to identify children with low EC scores at 36 months of age. An “attention only” model showed greater predictive sensitivity than the “environmental only” model. However, a model including both attentional and environmental variables was able to classify the groups (Low-EC vs. Average-to-High EC) with 100% accuracy. Sensitivity analyses indicate that socioeconomic variables together with attention control processes at 6 months, and self-restraint capacity at 9 months, are the most important predictors of EC.
Fil: Musso, Mariel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Centro Interdisciplinario de Investigaciones en Psicología Matemática y Experimental Dr. Horacio J. A. Rimoldi; Argentina
Fil: Moyano, Sebastián. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España
Fil: Rico Picó, Josué. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España
Fil: Conejero, Ángela. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España
Fil: Ballesteros Duperón, María Ángeles. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España
Fil: Cascallar, Eduardo. Katholikie Universiteit Leuven; Bélgica
Fil: Rueda, María Rosario. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España - Materia
-
Effortful control
Self-regulation
Attention
Artificial neural networks
Prediction
Machine learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/234177
Ver los metadatos del registro completo
id |
CONICETDig_07a8587c5b1a1eb9d7f95cbf90fff493 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/234177 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Predicting Effortful Control at 3 Years of Age from Measures of Attention and Home Environment in Infancy: A Machine Learning ApproachMusso, Mariel FernandaMoyano, SebastiánRico Picó, JosuéConejero, ÁngelaBallesteros Duperón, María ÁngelesCascallar, EduardoRueda, María RosarioEffortful controlSelf-regulationAttentionArtificial neural networksPredictionMachine learninghttps://purl.org/becyt/ford/5.1https://purl.org/becyt/ford/5Effortful control (EC) is a dimension of temperament that encompass individual differences in self-regulation and the control of reactivity. Much research suggests that EC has a strong foundation on the development of executive attention, but increasing evidence also shows a significant contribution of the rearing environment to individual differences in EC. The aim of the current study was to predict the development of EC at 36 months of age from early attentional and environmental measures taken in infancy using a machine learning approach. A sample of 78 infants participated in a longitudinal study running three waves of data collection at 6, 9, and 36 months of age. Attentional tasks were administered at 6 months of age, with two additional measures (i.e., one attentional measure and another self-restraint measure) being collected at 9 months of age. Parents reported household environment variables during wave 1, and their child’s EC at 36 months. A machine learning algorithm was implemented to identify children with low EC scores at 36 months of age. An “attention only” model showed greater predictive sensitivity than the “environmental only” model. However, a model including both attentional and environmental variables was able to classify the groups (Low-EC vs. Average-to-High EC) with 100% accuracy. Sensitivity analyses indicate that socioeconomic variables together with attention control processes at 6 months, and self-restraint capacity at 9 months, are the most important predictors of EC.Fil: Musso, Mariel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Centro Interdisciplinario de Investigaciones en Psicología Matemática y Experimental Dr. Horacio J. A. Rimoldi; ArgentinaFil: Moyano, Sebastián. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; EspañaFil: Rico Picó, Josué. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; EspañaFil: Conejero, Ángela. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; EspañaFil: Ballesteros Duperón, María Ángeles. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; EspañaFil: Cascallar, Eduardo. Katholikie Universiteit Leuven; BélgicaFil: Rueda, María Rosario. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; EspañaMDPI2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/234177Musso, Mariel Fernanda; Moyano, Sebastián; Rico Picó, Josué; Conejero, Ángela; Ballesteros Duperón, María Ángeles; et al.; Predicting Effortful Control at 3 Years of Age from Measures of Attention and Home Environment in Infancy: A Machine Learning Approach; MDPI; Children; 10; 6; 5-2023; 1-202227-9067CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/children10060982info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-9067/10/6/982info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:10:56Zoai:ri.conicet.gov.ar:11336/234177instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:10:57.257CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Predicting Effortful Control at 3 Years of Age from Measures of Attention and Home Environment in Infancy: A Machine Learning Approach |
title |
Predicting Effortful Control at 3 Years of Age from Measures of Attention and Home Environment in Infancy: A Machine Learning Approach |
spellingShingle |
Predicting Effortful Control at 3 Years of Age from Measures of Attention and Home Environment in Infancy: A Machine Learning Approach Musso, Mariel Fernanda Effortful control Self-regulation Attention Artificial neural networks Prediction Machine learning |
title_short |
Predicting Effortful Control at 3 Years of Age from Measures of Attention and Home Environment in Infancy: A Machine Learning Approach |
title_full |
Predicting Effortful Control at 3 Years of Age from Measures of Attention and Home Environment in Infancy: A Machine Learning Approach |
title_fullStr |
Predicting Effortful Control at 3 Years of Age from Measures of Attention and Home Environment in Infancy: A Machine Learning Approach |
title_full_unstemmed |
Predicting Effortful Control at 3 Years of Age from Measures of Attention and Home Environment in Infancy: A Machine Learning Approach |
title_sort |
Predicting Effortful Control at 3 Years of Age from Measures of Attention and Home Environment in Infancy: A Machine Learning Approach |
dc.creator.none.fl_str_mv |
Musso, Mariel Fernanda Moyano, Sebastián Rico Picó, Josué Conejero, Ángela Ballesteros Duperón, María Ángeles Cascallar, Eduardo Rueda, María Rosario |
author |
Musso, Mariel Fernanda |
author_facet |
Musso, Mariel Fernanda Moyano, Sebastián Rico Picó, Josué Conejero, Ángela Ballesteros Duperón, María Ángeles Cascallar, Eduardo Rueda, María Rosario |
author_role |
author |
author2 |
Moyano, Sebastián Rico Picó, Josué Conejero, Ángela Ballesteros Duperón, María Ángeles Cascallar, Eduardo Rueda, María Rosario |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Effortful control Self-regulation Attention Artificial neural networks Prediction Machine learning |
topic |
Effortful control Self-regulation Attention Artificial neural networks Prediction Machine learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.1 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
Effortful control (EC) is a dimension of temperament that encompass individual differences in self-regulation and the control of reactivity. Much research suggests that EC has a strong foundation on the development of executive attention, but increasing evidence also shows a significant contribution of the rearing environment to individual differences in EC. The aim of the current study was to predict the development of EC at 36 months of age from early attentional and environmental measures taken in infancy using a machine learning approach. A sample of 78 infants participated in a longitudinal study running three waves of data collection at 6, 9, and 36 months of age. Attentional tasks were administered at 6 months of age, with two additional measures (i.e., one attentional measure and another self-restraint measure) being collected at 9 months of age. Parents reported household environment variables during wave 1, and their child’s EC at 36 months. A machine learning algorithm was implemented to identify children with low EC scores at 36 months of age. An “attention only” model showed greater predictive sensitivity than the “environmental only” model. However, a model including both attentional and environmental variables was able to classify the groups (Low-EC vs. Average-to-High EC) with 100% accuracy. Sensitivity analyses indicate that socioeconomic variables together with attention control processes at 6 months, and self-restraint capacity at 9 months, are the most important predictors of EC. Fil: Musso, Mariel Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Centro Interdisciplinario de Investigaciones en Psicología Matemática y Experimental Dr. Horacio J. A. Rimoldi; Argentina Fil: Moyano, Sebastián. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España Fil: Rico Picó, Josué. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España Fil: Conejero, Ángela. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España Fil: Ballesteros Duperón, María Ángeles. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España Fil: Cascallar, Eduardo. Katholikie Universiteit Leuven; Bélgica Fil: Rueda, María Rosario. Universidad de Granada. Centro de Investigación Mente, Cerebro y Comportamiento.; España |
description |
Effortful control (EC) is a dimension of temperament that encompass individual differences in self-regulation and the control of reactivity. Much research suggests that EC has a strong foundation on the development of executive attention, but increasing evidence also shows a significant contribution of the rearing environment to individual differences in EC. The aim of the current study was to predict the development of EC at 36 months of age from early attentional and environmental measures taken in infancy using a machine learning approach. A sample of 78 infants participated in a longitudinal study running three waves of data collection at 6, 9, and 36 months of age. Attentional tasks were administered at 6 months of age, with two additional measures (i.e., one attentional measure and another self-restraint measure) being collected at 9 months of age. Parents reported household environment variables during wave 1, and their child’s EC at 36 months. A machine learning algorithm was implemented to identify children with low EC scores at 36 months of age. An “attention only” model showed greater predictive sensitivity than the “environmental only” model. However, a model including both attentional and environmental variables was able to classify the groups (Low-EC vs. Average-to-High EC) with 100% accuracy. Sensitivity analyses indicate that socioeconomic variables together with attention control processes at 6 months, and self-restraint capacity at 9 months, are the most important predictors of EC. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/234177 Musso, Mariel Fernanda; Moyano, Sebastián; Rico Picó, Josué; Conejero, Ángela; Ballesteros Duperón, María Ángeles; et al.; Predicting Effortful Control at 3 Years of Age from Measures of Attention and Home Environment in Infancy: A Machine Learning Approach; MDPI; Children; 10; 6; 5-2023; 1-20 2227-9067 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/234177 |
identifier_str_mv |
Musso, Mariel Fernanda; Moyano, Sebastián; Rico Picó, Josué; Conejero, Ángela; Ballesteros Duperón, María Ángeles; et al.; Predicting Effortful Control at 3 Years of Age from Measures of Attention and Home Environment in Infancy: A Machine Learning Approach; MDPI; Children; 10; 6; 5-2023; 1-20 2227-9067 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/children10060982 info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-9067/10/6/982 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980555783667712 |
score |
12.993085 |