Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion
- Autores
- González Segarra, Amanda J.; Barcelos Pontes, Gina; Jourjine, Nicholas; Del Toro, Alexander; Scott, Kristin
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.
Fil: González Segarra, Amanda J.. University of California at Berkeley; Estados Unidos
Fil: Barcelos Pontes, Gina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina
Fil: Jourjine, Nicholas. University of California at Berkeley; Estados Unidos
Fil: Del Toro, Alexander. University of California at Berkeley; Estados Unidos
Fil: Scott, Kristin. University of California at Berkeley; Estados Unidos - Materia
-
DROSOPHILA
TASTE
NEURAL CIRCUIT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/228175
Ver los metadatos del registro completo
id |
CONICETDig_7eff903ee927cad2e63ea592f2b3c9b8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/228175 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestionGonzález Segarra, Amanda J.Barcelos Pontes, GinaJourjine, NicholasDel Toro, AlexanderScott, KristinDROSOPHILATASTENEURAL CIRCUIThttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.Fil: González Segarra, Amanda J.. University of California at Berkeley; Estados UnidosFil: Barcelos Pontes, Gina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Jourjine, Nicholas. University of California at Berkeley; Estados UnidosFil: Del Toro, Alexander. University of California at Berkeley; Estados UnidosFil: Scott, Kristin. University of California at Berkeley; Estados UnidoseLife Sciences Publications2023-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/228175González Segarra, Amanda J.; Barcelos Pontes, Gina; Jourjine, Nicholas; Del Toro, Alexander; Scott, Kristin; Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion; eLife Sciences Publications; eLife; 12; 9-2023; 1-242050-084XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/88143info:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.88143.3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:53Zoai:ri.conicet.gov.ar:11336/228175instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:54.574CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion |
title |
Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion |
spellingShingle |
Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion González Segarra, Amanda J. DROSOPHILA TASTE NEURAL CIRCUIT |
title_short |
Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion |
title_full |
Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion |
title_fullStr |
Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion |
title_full_unstemmed |
Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion |
title_sort |
Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion |
dc.creator.none.fl_str_mv |
González Segarra, Amanda J. Barcelos Pontes, Gina Jourjine, Nicholas Del Toro, Alexander Scott, Kristin |
author |
González Segarra, Amanda J. |
author_facet |
González Segarra, Amanda J. Barcelos Pontes, Gina Jourjine, Nicholas Del Toro, Alexander Scott, Kristin |
author_role |
author |
author2 |
Barcelos Pontes, Gina Jourjine, Nicholas Del Toro, Alexander Scott, Kristin |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
DROSOPHILA TASTE NEURAL CIRCUIT |
topic |
DROSOPHILA TASTE NEURAL CIRCUIT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion. Fil: González Segarra, Amanda J.. University of California at Berkeley; Estados Unidos Fil: Barcelos Pontes, Gina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina Fil: Jourjine, Nicholas. University of California at Berkeley; Estados Unidos Fil: Del Toro, Alexander. University of California at Berkeley; Estados Unidos Fil: Scott, Kristin. University of California at Berkeley; Estados Unidos |
description |
Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/228175 González Segarra, Amanda J.; Barcelos Pontes, Gina; Jourjine, Nicholas; Del Toro, Alexander; Scott, Kristin; Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion; eLife Sciences Publications; eLife; 12; 9-2023; 1-24 2050-084X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/228175 |
identifier_str_mv |
González Segarra, Amanda J.; Barcelos Pontes, Gina; Jourjine, Nicholas; Del Toro, Alexander; Scott, Kristin; Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion; eLife Sciences Publications; eLife; 12; 9-2023; 1-24 2050-084X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/88143 info:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.88143.3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
eLife Sciences Publications |
publisher.none.fl_str_mv |
eLife Sciences Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269000568930304 |
score |
13.13397 |