Ambient Species Density and Gas Temperature Radial Profiles Derived from a Schlieren Technique in a Low-Frequency Non-thermal Oxygen Plasma Jet

Autores
Chamorro Garcés, Juan Camilo; Prevosto, Leandro; Cejas, Ezequiel; Fischfeld, G.; Kelly, H.; Mancinelli, B.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A quantitative interpretation of the schlieren technique applied to a non-thermal atmospheric-pressure oxygen plasma jet driven at low-frequency (50 Hz) is reported. The jet was operated in the turbulent regime with a hole-diameter based Reynolds number of 13,800. The technique coupled to a simplified kinetic model of the jet effluent region allowed deriving the temporally-averaged values of the gas temperature of the jet by processing the gray-level contrast values of digital schlieren images. The penetration of the ambient air into the jet due to turbulent diffusion was taken into account. The calibration of the optical system was obtained by fitting the sensitivity parameter so that the oxygen fraction at the nozzle exit was unity. The radial profiles of the contrast in the discharge off case were quite symmetric on the whole outflow, but with the discharge on, relatively strong departures from the symmetry were evident in the near field. The time-averaged gas temperature of the jet was relatively high, with a maximum departure of about 55 K from the room temperature; as can be expected owing to the operating molecular gas. The uncertainty in the temperature measurements was within 6 K, primarily derived from errors associated to the Abel inversion procedure. The results showed an increase in the gas temperature of about 8 K close to the nozzle exit; thus suggesting that some fast-gas heating (with a heating rate ~ 0.3 K/μs) still occurs in the near field of the outflow.
Fil: Chamorro Garcés, Juan Camilo. Universidad Tecnológica Nacional. Facultad Reg.venado Tuerto. Departamento de Ing.electromecanica. Laboratorio de Descargas Eléctricas; Argentina
Fil: Prevosto, Leandro. Universidad Tecnológica Nacional. Facultad Reg.venado Tuerto. Departamento de Ing.electromecanica. Laboratorio de Descargas Eléctricas; Argentina
Fil: Cejas, Ezequiel. Universidad Tecnológica Nacional. Facultad Reg.venado Tuerto. Departamento de Ing.electromecanica. Laboratorio de Descargas Eléctricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Fischfeld, G.. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Kelly, H.. Universidad Tecnológica Nacional. Facultad Reg.venado Tuerto. Departamento de Ing.electromecanica. Laboratorio de Descargas Eléctricas; Argentina
Fil: Mancinelli, B.. Universidad Tecnológica Nacional. Facultad Reg.venado Tuerto. Departamento de Ing.electromecanica. Laboratorio de Descargas Eléctricas; Argentina
Materia
Non-Equilibrium Plasma Jet
Gas Temperature
Turbulentair Air Mixing
Schlieren Technique
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33748

id CONICETDig_7ddc770d3c6ee0b979b928b7254f9b4a
oai_identifier_str oai:ri.conicet.gov.ar:11336/33748
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ambient Species Density and Gas Temperature Radial Profiles Derived from a Schlieren Technique in a Low-Frequency Non-thermal Oxygen Plasma JetChamorro Garcés, Juan CamiloPrevosto, LeandroCejas, EzequielFischfeld, G.Kelly, H.Mancinelli, B.Non-Equilibrium Plasma JetGas TemperatureTurbulentair Air MixingSchlieren Techniquehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A quantitative interpretation of the schlieren technique applied to a non-thermal atmospheric-pressure oxygen plasma jet driven at low-frequency (50 Hz) is reported. The jet was operated in the turbulent regime with a hole-diameter based Reynolds number of 13,800. The technique coupled to a simplified kinetic model of the jet effluent region allowed deriving the temporally-averaged values of the gas temperature of the jet by processing the gray-level contrast values of digital schlieren images. The penetration of the ambient air into the jet due to turbulent diffusion was taken into account. The calibration of the optical system was obtained by fitting the sensitivity parameter so that the oxygen fraction at the nozzle exit was unity. The radial profiles of the contrast in the discharge off case were quite symmetric on the whole outflow, but with the discharge on, relatively strong departures from the symmetry were evident in the near field. The time-averaged gas temperature of the jet was relatively high, with a maximum departure of about 55 K from the room temperature; as can be expected owing to the operating molecular gas. The uncertainty in the temperature measurements was within 6 K, primarily derived from errors associated to the Abel inversion procedure. The results showed an increase in the gas temperature of about 8 K close to the nozzle exit; thus suggesting that some fast-gas heating (with a heating rate ~ 0.3 K/μs) still occurs in the near field of the outflow.Fil: Chamorro Garcés, Juan Camilo. Universidad Tecnológica Nacional. Facultad Reg.venado Tuerto. Departamento de Ing.electromecanica. Laboratorio de Descargas Eléctricas; ArgentinaFil: Prevosto, Leandro. Universidad Tecnológica Nacional. Facultad Reg.venado Tuerto. Departamento de Ing.electromecanica. Laboratorio de Descargas Eléctricas; ArgentinaFil: Cejas, Ezequiel. Universidad Tecnológica Nacional. Facultad Reg.venado Tuerto. Departamento de Ing.electromecanica. Laboratorio de Descargas Eléctricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Fischfeld, G.. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Kelly, H.. Universidad Tecnológica Nacional. Facultad Reg.venado Tuerto. Departamento de Ing.electromecanica. Laboratorio de Descargas Eléctricas; ArgentinaFil: Mancinelli, B.. Universidad Tecnológica Nacional. Facultad Reg.venado Tuerto. Departamento de Ing.electromecanica. Laboratorio de Descargas Eléctricas; ArgentinaSpringer2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33748Chamorro Garcés, Juan Camilo; Prevosto, Leandro; Cejas, Ezequiel; Fischfeld, G.; Kelly, H.; et al.; Ambient Species Density and Gas Temperature Radial Profiles Derived from a Schlieren Technique in a Low-Frequency Non-thermal Oxygen Plasma Jet; Springer; Plasma Chemistry And Plasma Processing; 38; 1; 1-2018; 45-610272-4324CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11090-017-9842-6info:eu-repo/semantics/altIdentifier/doi/10.1007/s11090-017-9842-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:01:07Zoai:ri.conicet.gov.ar:11336/33748instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:01:08.15CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ambient Species Density and Gas Temperature Radial Profiles Derived from a Schlieren Technique in a Low-Frequency Non-thermal Oxygen Plasma Jet
title Ambient Species Density and Gas Temperature Radial Profiles Derived from a Schlieren Technique in a Low-Frequency Non-thermal Oxygen Plasma Jet
spellingShingle Ambient Species Density and Gas Temperature Radial Profiles Derived from a Schlieren Technique in a Low-Frequency Non-thermal Oxygen Plasma Jet
Chamorro Garcés, Juan Camilo
Non-Equilibrium Plasma Jet
Gas Temperature
Turbulentair Air Mixing
Schlieren Technique
title_short Ambient Species Density and Gas Temperature Radial Profiles Derived from a Schlieren Technique in a Low-Frequency Non-thermal Oxygen Plasma Jet
title_full Ambient Species Density and Gas Temperature Radial Profiles Derived from a Schlieren Technique in a Low-Frequency Non-thermal Oxygen Plasma Jet
title_fullStr Ambient Species Density and Gas Temperature Radial Profiles Derived from a Schlieren Technique in a Low-Frequency Non-thermal Oxygen Plasma Jet
title_full_unstemmed Ambient Species Density and Gas Temperature Radial Profiles Derived from a Schlieren Technique in a Low-Frequency Non-thermal Oxygen Plasma Jet
title_sort Ambient Species Density and Gas Temperature Radial Profiles Derived from a Schlieren Technique in a Low-Frequency Non-thermal Oxygen Plasma Jet
dc.creator.none.fl_str_mv Chamorro Garcés, Juan Camilo
Prevosto, Leandro
Cejas, Ezequiel
Fischfeld, G.
Kelly, H.
Mancinelli, B.
author Chamorro Garcés, Juan Camilo
author_facet Chamorro Garcés, Juan Camilo
Prevosto, Leandro
Cejas, Ezequiel
Fischfeld, G.
Kelly, H.
Mancinelli, B.
author_role author
author2 Prevosto, Leandro
Cejas, Ezequiel
Fischfeld, G.
Kelly, H.
Mancinelli, B.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Non-Equilibrium Plasma Jet
Gas Temperature
Turbulentair Air Mixing
Schlieren Technique
topic Non-Equilibrium Plasma Jet
Gas Temperature
Turbulentair Air Mixing
Schlieren Technique
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A quantitative interpretation of the schlieren technique applied to a non-thermal atmospheric-pressure oxygen plasma jet driven at low-frequency (50 Hz) is reported. The jet was operated in the turbulent regime with a hole-diameter based Reynolds number of 13,800. The technique coupled to a simplified kinetic model of the jet effluent region allowed deriving the temporally-averaged values of the gas temperature of the jet by processing the gray-level contrast values of digital schlieren images. The penetration of the ambient air into the jet due to turbulent diffusion was taken into account. The calibration of the optical system was obtained by fitting the sensitivity parameter so that the oxygen fraction at the nozzle exit was unity. The radial profiles of the contrast in the discharge off case were quite symmetric on the whole outflow, but with the discharge on, relatively strong departures from the symmetry were evident in the near field. The time-averaged gas temperature of the jet was relatively high, with a maximum departure of about 55 K from the room temperature; as can be expected owing to the operating molecular gas. The uncertainty in the temperature measurements was within 6 K, primarily derived from errors associated to the Abel inversion procedure. The results showed an increase in the gas temperature of about 8 K close to the nozzle exit; thus suggesting that some fast-gas heating (with a heating rate ~ 0.3 K/μs) still occurs in the near field of the outflow.
Fil: Chamorro Garcés, Juan Camilo. Universidad Tecnológica Nacional. Facultad Reg.venado Tuerto. Departamento de Ing.electromecanica. Laboratorio de Descargas Eléctricas; Argentina
Fil: Prevosto, Leandro. Universidad Tecnológica Nacional. Facultad Reg.venado Tuerto. Departamento de Ing.electromecanica. Laboratorio de Descargas Eléctricas; Argentina
Fil: Cejas, Ezequiel. Universidad Tecnológica Nacional. Facultad Reg.venado Tuerto. Departamento de Ing.electromecanica. Laboratorio de Descargas Eléctricas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Fischfeld, G.. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
Fil: Kelly, H.. Universidad Tecnológica Nacional. Facultad Reg.venado Tuerto. Departamento de Ing.electromecanica. Laboratorio de Descargas Eléctricas; Argentina
Fil: Mancinelli, B.. Universidad Tecnológica Nacional. Facultad Reg.venado Tuerto. Departamento de Ing.electromecanica. Laboratorio de Descargas Eléctricas; Argentina
description A quantitative interpretation of the schlieren technique applied to a non-thermal atmospheric-pressure oxygen plasma jet driven at low-frequency (50 Hz) is reported. The jet was operated in the turbulent regime with a hole-diameter based Reynolds number of 13,800. The technique coupled to a simplified kinetic model of the jet effluent region allowed deriving the temporally-averaged values of the gas temperature of the jet by processing the gray-level contrast values of digital schlieren images. The penetration of the ambient air into the jet due to turbulent diffusion was taken into account. The calibration of the optical system was obtained by fitting the sensitivity parameter so that the oxygen fraction at the nozzle exit was unity. The radial profiles of the contrast in the discharge off case were quite symmetric on the whole outflow, but with the discharge on, relatively strong departures from the symmetry were evident in the near field. The time-averaged gas temperature of the jet was relatively high, with a maximum departure of about 55 K from the room temperature; as can be expected owing to the operating molecular gas. The uncertainty in the temperature measurements was within 6 K, primarily derived from errors associated to the Abel inversion procedure. The results showed an increase in the gas temperature of about 8 K close to the nozzle exit; thus suggesting that some fast-gas heating (with a heating rate ~ 0.3 K/μs) still occurs in the near field of the outflow.
publishDate 2018
dc.date.none.fl_str_mv 2018-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33748
Chamorro Garcés, Juan Camilo; Prevosto, Leandro; Cejas, Ezequiel; Fischfeld, G.; Kelly, H.; et al.; Ambient Species Density and Gas Temperature Radial Profiles Derived from a Schlieren Technique in a Low-Frequency Non-thermal Oxygen Plasma Jet; Springer; Plasma Chemistry And Plasma Processing; 38; 1; 1-2018; 45-61
0272-4324
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33748
identifier_str_mv Chamorro Garcés, Juan Camilo; Prevosto, Leandro; Cejas, Ezequiel; Fischfeld, G.; Kelly, H.; et al.; Ambient Species Density and Gas Temperature Radial Profiles Derived from a Schlieren Technique in a Low-Frequency Non-thermal Oxygen Plasma Jet; Springer; Plasma Chemistry And Plasma Processing; 38; 1; 1-2018; 45-61
0272-4324
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s11090-017-9842-6
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11090-017-9842-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781188306370560
score 12.982451