Bioremediation of lindane and chrome (vi) co-contaminated soils by bioaugmentation with an indigenous consortium of actinobacteria
- Autores
- Bigliardo, Ana Lucia; Benimeli, Claudia Susana; Polti, Marta Alejandra
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The technological advances and the growth of the world population have created severe problems of mixed contamination in soils, by both organic and inorganic compounds. In particular, mixed pollution by chromium VI [Cr(VI)] and lindane (LIN) has been reported in different environments around the world, including the Northwest of Argentina.The treatment of co-contaminated soils is complex and presents numerous challenges. Bioremediation is a promising technology that could successfully remove mixed compounds.Bioaugmentation with actinobacteria represents an efficient biotechnological tool for the mixed polluted soil reclamation.The objective of the present work was to remove simultaneously LIN and Cr(VI) from silty loam soils, by the bioaugmentation with an actinobacteria consortium formed by Streptomyces sp. M7, MC1, A5, and Amycolatopsis tucumanensis AB0. Mesocosmos of 1 Kg of soil were prepared, contaminated with both pollutants and allowed to stabilize for a month at room temperature and 50% of water holding capacity. They were then inoculated at 0 and 30 d with the actinobacteria consortium (2 g Kg-1, each strain in the same proportion). Mesocosms were incubated for 90 d with minimal intervention of environmental parameters. All corresponding controls were carried out.The contaminated system (CS), did not remove LIN until the end of the assay; however, the contaminated and bioaugmented system (CBS) showed 80% removal of the pesticide during 90 d of incubation. Both CS and CBS were able to remove almost all Cr(VI), however, CBS could do it faster and more efficiently.The microbial counts (MC) showed an inhibitory effect of the contaminants on the native flora of the soil, since the lowest MC were observed in CS (8.7 x 10 7 UFC g-1), which were significantly lower at the end of assay respect to 0 d (1.44 x 10 8 CFU g-1). The highest MC were reached in bioaugmented systems (BS) (1.6 x 10 9 CFU g-1), which showed a growing profile up to 40 d of incubation and remained constant until the end of the assay. The natural soil (NS), without any treatment, presented a constant profile in the MC throughout 90 d (1.70-2.71 x 10 8 UFC g-1), while the CBS showed a variable profile up to 40 d of incubation and then increased, reaching similar values to SB (1.2 x 10 9 CFU g-1).The enzymatic soil activities showed a negative effect of the contaminants on them, especially catalase, which was totally inhibited until 50 d of incubation; since then this activity was recovered, in coincidence with the greater removal of the contaminants. The fluorescein diacetate hydrolysis activity (FDA) showed a strong correlation with the MC. FDA ranged between 8.01 and 135.07 g fluorescein g-1 h-1; NS showed the lowest FDA. Acid phosphatase activity exhibited variable profiles, but following a certain correlation with the MC in all systems. The maximum value was 130.03 g p-nitrophenol g-1 h-1 in NS, whereas the lowest was observed in CS (4.29 g p-nitrophenol g-1 h-1).
Fil: Bigliardo, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Benimeli, Claudia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Nacional de Catamarca. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Polti, Marta Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina
XVIII Congreso Argentino de Microbiología General
Los Cocos
Argentina
Sociedad Argentina de Microbiología General - Materia
-
BIOREMEDIATION
MIXED POLLUTION
ACTINOBACTERIA
MESOCOSM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/201033
Ver los metadatos del registro completo
id |
CONICETDig_7dab9204101296027bcdbd98be5936d6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/201033 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bioremediation of lindane and chrome (vi) co-contaminated soils by bioaugmentation with an indigenous consortium of actinobacteriaBigliardo, Ana LuciaBenimeli, Claudia SusanaPolti, Marta AlejandraBIOREMEDIATIONMIXED POLLUTIONACTINOBACTERIAMESOCOSMhttps://purl.org/becyt/ford/2.8https://purl.org/becyt/ford/2The technological advances and the growth of the world population have created severe problems of mixed contamination in soils, by both organic and inorganic compounds. In particular, mixed pollution by chromium VI [Cr(VI)] and lindane (LIN) has been reported in different environments around the world, including the Northwest of Argentina.The treatment of co-contaminated soils is complex and presents numerous challenges. Bioremediation is a promising technology that could successfully remove mixed compounds.Bioaugmentation with actinobacteria represents an efficient biotechnological tool for the mixed polluted soil reclamation.The objective of the present work was to remove simultaneously LIN and Cr(VI) from silty loam soils, by the bioaugmentation with an actinobacteria consortium formed by Streptomyces sp. M7, MC1, A5, and Amycolatopsis tucumanensis AB0. Mesocosmos of 1 Kg of soil were prepared, contaminated with both pollutants and allowed to stabilize for a month at room temperature and 50% of water holding capacity. They were then inoculated at 0 and 30 d with the actinobacteria consortium (2 g Kg-1, each strain in the same proportion). Mesocosms were incubated for 90 d with minimal intervention of environmental parameters. All corresponding controls were carried out.The contaminated system (CS), did not remove LIN until the end of the assay; however, the contaminated and bioaugmented system (CBS) showed 80% removal of the pesticide during 90 d of incubation. Both CS and CBS were able to remove almost all Cr(VI), however, CBS could do it faster and more efficiently.The microbial counts (MC) showed an inhibitory effect of the contaminants on the native flora of the soil, since the lowest MC were observed in CS (8.7 x 10 7 UFC g-1), which were significantly lower at the end of assay respect to 0 d (1.44 x 10 8 CFU g-1). The highest MC were reached in bioaugmented systems (BS) (1.6 x 10 9 CFU g-1), which showed a growing profile up to 40 d of incubation and remained constant until the end of the assay. The natural soil (NS), without any treatment, presented a constant profile in the MC throughout 90 d (1.70-2.71 x 10 8 UFC g-1), while the CBS showed a variable profile up to 40 d of incubation and then increased, reaching similar values to SB (1.2 x 10 9 CFU g-1).The enzymatic soil activities showed a negative effect of the contaminants on them, especially catalase, which was totally inhibited until 50 d of incubation; since then this activity was recovered, in coincidence with the greater removal of the contaminants. The fluorescein diacetate hydrolysis activity (FDA) showed a strong correlation with the MC. FDA ranged between 8.01 and 135.07 g fluorescein g-1 h-1; NS showed the lowest FDA. Acid phosphatase activity exhibited variable profiles, but following a certain correlation with the MC in all systems. The maximum value was 130.03 g p-nitrophenol g-1 h-1 in NS, whereas the lowest was observed in CS (4.29 g p-nitrophenol g-1 h-1).Fil: Bigliardo, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Benimeli, Claudia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Nacional de Catamarca. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Polti, Marta Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaXVIII Congreso Argentino de Microbiología GeneralLos CocosArgentinaSociedad Argentina de Microbiología GeneralSociedad Argentina de Microbiología General2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/201033Bioremediation of lindane and chrome (vi) co-contaminated soils by bioaugmentation with an indigenous consortium of actinobacteria; XVIII Congreso Argentino de Microbiología General; Los Cocos; Argentina; 2022; 71-72CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://samige.org.ar/wp-content/uploads/2022/10/Libro-de-Resumenes-SAMIGE-2022_final.pdfNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:16Zoai:ri.conicet.gov.ar:11336/201033instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:16.756CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bioremediation of lindane and chrome (vi) co-contaminated soils by bioaugmentation with an indigenous consortium of actinobacteria |
title |
Bioremediation of lindane and chrome (vi) co-contaminated soils by bioaugmentation with an indigenous consortium of actinobacteria |
spellingShingle |
Bioremediation of lindane and chrome (vi) co-contaminated soils by bioaugmentation with an indigenous consortium of actinobacteria Bigliardo, Ana Lucia BIOREMEDIATION MIXED POLLUTION ACTINOBACTERIA MESOCOSM |
title_short |
Bioremediation of lindane and chrome (vi) co-contaminated soils by bioaugmentation with an indigenous consortium of actinobacteria |
title_full |
Bioremediation of lindane and chrome (vi) co-contaminated soils by bioaugmentation with an indigenous consortium of actinobacteria |
title_fullStr |
Bioremediation of lindane and chrome (vi) co-contaminated soils by bioaugmentation with an indigenous consortium of actinobacteria |
title_full_unstemmed |
Bioremediation of lindane and chrome (vi) co-contaminated soils by bioaugmentation with an indigenous consortium of actinobacteria |
title_sort |
Bioremediation of lindane and chrome (vi) co-contaminated soils by bioaugmentation with an indigenous consortium of actinobacteria |
dc.creator.none.fl_str_mv |
Bigliardo, Ana Lucia Benimeli, Claudia Susana Polti, Marta Alejandra |
author |
Bigliardo, Ana Lucia |
author_facet |
Bigliardo, Ana Lucia Benimeli, Claudia Susana Polti, Marta Alejandra |
author_role |
author |
author2 |
Benimeli, Claudia Susana Polti, Marta Alejandra |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BIOREMEDIATION MIXED POLLUTION ACTINOBACTERIA MESOCOSM |
topic |
BIOREMEDIATION MIXED POLLUTION ACTINOBACTERIA MESOCOSM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.8 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The technological advances and the growth of the world population have created severe problems of mixed contamination in soils, by both organic and inorganic compounds. In particular, mixed pollution by chromium VI [Cr(VI)] and lindane (LIN) has been reported in different environments around the world, including the Northwest of Argentina.The treatment of co-contaminated soils is complex and presents numerous challenges. Bioremediation is a promising technology that could successfully remove mixed compounds.Bioaugmentation with actinobacteria represents an efficient biotechnological tool for the mixed polluted soil reclamation.The objective of the present work was to remove simultaneously LIN and Cr(VI) from silty loam soils, by the bioaugmentation with an actinobacteria consortium formed by Streptomyces sp. M7, MC1, A5, and Amycolatopsis tucumanensis AB0. Mesocosmos of 1 Kg of soil were prepared, contaminated with both pollutants and allowed to stabilize for a month at room temperature and 50% of water holding capacity. They were then inoculated at 0 and 30 d with the actinobacteria consortium (2 g Kg-1, each strain in the same proportion). Mesocosms were incubated for 90 d with minimal intervention of environmental parameters. All corresponding controls were carried out.The contaminated system (CS), did not remove LIN until the end of the assay; however, the contaminated and bioaugmented system (CBS) showed 80% removal of the pesticide during 90 d of incubation. Both CS and CBS were able to remove almost all Cr(VI), however, CBS could do it faster and more efficiently.The microbial counts (MC) showed an inhibitory effect of the contaminants on the native flora of the soil, since the lowest MC were observed in CS (8.7 x 10 7 UFC g-1), which were significantly lower at the end of assay respect to 0 d (1.44 x 10 8 CFU g-1). The highest MC were reached in bioaugmented systems (BS) (1.6 x 10 9 CFU g-1), which showed a growing profile up to 40 d of incubation and remained constant until the end of the assay. The natural soil (NS), without any treatment, presented a constant profile in the MC throughout 90 d (1.70-2.71 x 10 8 UFC g-1), while the CBS showed a variable profile up to 40 d of incubation and then increased, reaching similar values to SB (1.2 x 10 9 CFU g-1).The enzymatic soil activities showed a negative effect of the contaminants on them, especially catalase, which was totally inhibited until 50 d of incubation; since then this activity was recovered, in coincidence with the greater removal of the contaminants. The fluorescein diacetate hydrolysis activity (FDA) showed a strong correlation with the MC. FDA ranged between 8.01 and 135.07 g fluorescein g-1 h-1; NS showed the lowest FDA. Acid phosphatase activity exhibited variable profiles, but following a certain correlation with the MC in all systems. The maximum value was 130.03 g p-nitrophenol g-1 h-1 in NS, whereas the lowest was observed in CS (4.29 g p-nitrophenol g-1 h-1). Fil: Bigliardo, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina Fil: Benimeli, Claudia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Nacional de Catamarca. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Polti, Marta Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina XVIII Congreso Argentino de Microbiología General Los Cocos Argentina Sociedad Argentina de Microbiología General |
description |
The technological advances and the growth of the world population have created severe problems of mixed contamination in soils, by both organic and inorganic compounds. In particular, mixed pollution by chromium VI [Cr(VI)] and lindane (LIN) has been reported in different environments around the world, including the Northwest of Argentina.The treatment of co-contaminated soils is complex and presents numerous challenges. Bioremediation is a promising technology that could successfully remove mixed compounds.Bioaugmentation with actinobacteria represents an efficient biotechnological tool for the mixed polluted soil reclamation.The objective of the present work was to remove simultaneously LIN and Cr(VI) from silty loam soils, by the bioaugmentation with an actinobacteria consortium formed by Streptomyces sp. M7, MC1, A5, and Amycolatopsis tucumanensis AB0. Mesocosmos of 1 Kg of soil were prepared, contaminated with both pollutants and allowed to stabilize for a month at room temperature and 50% of water holding capacity. They were then inoculated at 0 and 30 d with the actinobacteria consortium (2 g Kg-1, each strain in the same proportion). Mesocosms were incubated for 90 d with minimal intervention of environmental parameters. All corresponding controls were carried out.The contaminated system (CS), did not remove LIN until the end of the assay; however, the contaminated and bioaugmented system (CBS) showed 80% removal of the pesticide during 90 d of incubation. Both CS and CBS were able to remove almost all Cr(VI), however, CBS could do it faster and more efficiently.The microbial counts (MC) showed an inhibitory effect of the contaminants on the native flora of the soil, since the lowest MC were observed in CS (8.7 x 10 7 UFC g-1), which were significantly lower at the end of assay respect to 0 d (1.44 x 10 8 CFU g-1). The highest MC were reached in bioaugmented systems (BS) (1.6 x 10 9 CFU g-1), which showed a growing profile up to 40 d of incubation and remained constant until the end of the assay. The natural soil (NS), without any treatment, presented a constant profile in the MC throughout 90 d (1.70-2.71 x 10 8 UFC g-1), while the CBS showed a variable profile up to 40 d of incubation and then increased, reaching similar values to SB (1.2 x 10 9 CFU g-1).The enzymatic soil activities showed a negative effect of the contaminants on them, especially catalase, which was totally inhibited until 50 d of incubation; since then this activity was recovered, in coincidence with the greater removal of the contaminants. The fluorescein diacetate hydrolysis activity (FDA) showed a strong correlation with the MC. FDA ranged between 8.01 and 135.07 g fluorescein g-1 h-1; NS showed the lowest FDA. Acid phosphatase activity exhibited variable profiles, but following a certain correlation with the MC in all systems. The maximum value was 130.03 g p-nitrophenol g-1 h-1 in NS, whereas the lowest was observed in CS (4.29 g p-nitrophenol g-1 h-1). |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/201033 Bioremediation of lindane and chrome (vi) co-contaminated soils by bioaugmentation with an indigenous consortium of actinobacteria; XVIII Congreso Argentino de Microbiología General; Los Cocos; Argentina; 2022; 71-72 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/201033 |
identifier_str_mv |
Bioremediation of lindane and chrome (vi) co-contaminated soils by bioaugmentation with an indigenous consortium of actinobacteria; XVIII Congreso Argentino de Microbiología General; Los Cocos; Argentina; 2022; 71-72 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://samige.org.ar/wp-content/uploads/2022/10/Libro-de-Resumenes-SAMIGE-2022_final.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Sociedad Argentina de Microbiología General |
publisher.none.fl_str_mv |
Sociedad Argentina de Microbiología General |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269792510148608 |
score |
13.13397 |