A method to improve MODIS AOD values: Application to South America
- Autores
- Lanzaco, Bethania Luz; Olcese, Luis Eduardo; Palancar, Gustavo Gerardo; Toselli, Beatriz Margarita
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a method to correct aerosol optical depth (AOD) values taken from Collection 6 MODIS observations, which resulted in values closer to those recorded by the ground-based network AERONET. The method is based on machine learning techniques (Artificial Neural Networks and Support Vector Regression), and uses MODIS AOD values and meteorological parameters as inputs. The method showed improved results, compared with the direct MODIS AOD, when applied to nine stations in South America. The percentage of improvement, measured in terms of R2, ranged from 2% (Alta Floresta) to 79% (Buenos Aires). This improvement was also quantified considering the percentage of data within the MODIS expected error, being 91% for this method and 57% for direct correlation. The method corrected not only the systematic bias in temporal data series but also the outliers. To highlight this ability, the results for each AERONET station were individually analyzed. Considering the results as a whole, this method showed to be a valuable tool to enhance MODIS AOD retrievals, especially for locations with systematic deviations.
Fil: Lanzaco, Bethania Luz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Olcese, Luis Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Palancar, Gustavo Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Toselli, Beatriz Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina - Materia
-
AERONET
AOD SATELLITE RETRIEVAL
ARTIFICIAL NEURAL NETWORKS
MODIS AOD BIAS CORRECTION
SUPPORT VECTOR REGRESSION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/54894
Ver los metadatos del registro completo
| id |
CONICETDig_7cec59bb552044650b5bb91c700df960 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/54894 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A method to improve MODIS AOD values: Application to South AmericaLanzaco, Bethania LuzOlcese, Luis EduardoPalancar, Gustavo GerardoToselli, Beatriz MargaritaAERONETAOD SATELLITE RETRIEVALARTIFICIAL NEURAL NETWORKSMODIS AOD BIAS CORRECTIONSUPPORT VECTOR REGRESSIONhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We present a method to correct aerosol optical depth (AOD) values taken from Collection 6 MODIS observations, which resulted in values closer to those recorded by the ground-based network AERONET. The method is based on machine learning techniques (Artificial Neural Networks and Support Vector Regression), and uses MODIS AOD values and meteorological parameters as inputs. The method showed improved results, compared with the direct MODIS AOD, when applied to nine stations in South America. The percentage of improvement, measured in terms of R2, ranged from 2% (Alta Floresta) to 79% (Buenos Aires). This improvement was also quantified considering the percentage of data within the MODIS expected error, being 91% for this method and 57% for direct correlation. The method corrected not only the systematic bias in temporal data series but also the outliers. To highlight this ability, the results for each AERONET station were individually analyzed. Considering the results as a whole, this method showed to be a valuable tool to enhance MODIS AOD retrievals, especially for locations with systematic deviations.Fil: Lanzaco, Bethania Luz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Olcese, Luis Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Palancar, Gustavo Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Toselli, Beatriz Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaTaiwan Assoc Aerosol Res-taar2016-06-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54894Lanzaco, Bethania Luz; Olcese, Luis Eduardo; Palancar, Gustavo Gerardo; Toselli, Beatriz Margarita; A method to improve MODIS AOD values: Application to South America; Taiwan Assoc Aerosol Res-taar; Aerosol And Air Quality Research; 16; 6; 27-6-2016; 1509-15221680-85842071-1409CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aaqr.org/Doi.php?id=16_AAQR-15-05-OA-0375info:eu-repo/semantics/altIdentifier/doi/10.4209/aaqr.2015.05.0375info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:14:58Zoai:ri.conicet.gov.ar:11336/54894instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:14:59.161CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A method to improve MODIS AOD values: Application to South America |
| title |
A method to improve MODIS AOD values: Application to South America |
| spellingShingle |
A method to improve MODIS AOD values: Application to South America Lanzaco, Bethania Luz AERONET AOD SATELLITE RETRIEVAL ARTIFICIAL NEURAL NETWORKS MODIS AOD BIAS CORRECTION SUPPORT VECTOR REGRESSION |
| title_short |
A method to improve MODIS AOD values: Application to South America |
| title_full |
A method to improve MODIS AOD values: Application to South America |
| title_fullStr |
A method to improve MODIS AOD values: Application to South America |
| title_full_unstemmed |
A method to improve MODIS AOD values: Application to South America |
| title_sort |
A method to improve MODIS AOD values: Application to South America |
| dc.creator.none.fl_str_mv |
Lanzaco, Bethania Luz Olcese, Luis Eduardo Palancar, Gustavo Gerardo Toselli, Beatriz Margarita |
| author |
Lanzaco, Bethania Luz |
| author_facet |
Lanzaco, Bethania Luz Olcese, Luis Eduardo Palancar, Gustavo Gerardo Toselli, Beatriz Margarita |
| author_role |
author |
| author2 |
Olcese, Luis Eduardo Palancar, Gustavo Gerardo Toselli, Beatriz Margarita |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
AERONET AOD SATELLITE RETRIEVAL ARTIFICIAL NEURAL NETWORKS MODIS AOD BIAS CORRECTION SUPPORT VECTOR REGRESSION |
| topic |
AERONET AOD SATELLITE RETRIEVAL ARTIFICIAL NEURAL NETWORKS MODIS AOD BIAS CORRECTION SUPPORT VECTOR REGRESSION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We present a method to correct aerosol optical depth (AOD) values taken from Collection 6 MODIS observations, which resulted in values closer to those recorded by the ground-based network AERONET. The method is based on machine learning techniques (Artificial Neural Networks and Support Vector Regression), and uses MODIS AOD values and meteorological parameters as inputs. The method showed improved results, compared with the direct MODIS AOD, when applied to nine stations in South America. The percentage of improvement, measured in terms of R2, ranged from 2% (Alta Floresta) to 79% (Buenos Aires). This improvement was also quantified considering the percentage of data within the MODIS expected error, being 91% for this method and 57% for direct correlation. The method corrected not only the systematic bias in temporal data series but also the outliers. To highlight this ability, the results for each AERONET station were individually analyzed. Considering the results as a whole, this method showed to be a valuable tool to enhance MODIS AOD retrievals, especially for locations with systematic deviations. Fil: Lanzaco, Bethania Luz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina Fil: Olcese, Luis Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina Fil: Palancar, Gustavo Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina Fil: Toselli, Beatriz Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina |
| description |
We present a method to correct aerosol optical depth (AOD) values taken from Collection 6 MODIS observations, which resulted in values closer to those recorded by the ground-based network AERONET. The method is based on machine learning techniques (Artificial Neural Networks and Support Vector Regression), and uses MODIS AOD values and meteorological parameters as inputs. The method showed improved results, compared with the direct MODIS AOD, when applied to nine stations in South America. The percentage of improvement, measured in terms of R2, ranged from 2% (Alta Floresta) to 79% (Buenos Aires). This improvement was also quantified considering the percentage of data within the MODIS expected error, being 91% for this method and 57% for direct correlation. The method corrected not only the systematic bias in temporal data series but also the outliers. To highlight this ability, the results for each AERONET station were individually analyzed. Considering the results as a whole, this method showed to be a valuable tool to enhance MODIS AOD retrievals, especially for locations with systematic deviations. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-06-27 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/54894 Lanzaco, Bethania Luz; Olcese, Luis Eduardo; Palancar, Gustavo Gerardo; Toselli, Beatriz Margarita; A method to improve MODIS AOD values: Application to South America; Taiwan Assoc Aerosol Res-taar; Aerosol And Air Quality Research; 16; 6; 27-6-2016; 1509-1522 1680-8584 2071-1409 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/54894 |
| identifier_str_mv |
Lanzaco, Bethania Luz; Olcese, Luis Eduardo; Palancar, Gustavo Gerardo; Toselli, Beatriz Margarita; A method to improve MODIS AOD values: Application to South America; Taiwan Assoc Aerosol Res-taar; Aerosol And Air Quality Research; 16; 6; 27-6-2016; 1509-1522 1680-8584 2071-1409 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://aaqr.org/Doi.php?id=16_AAQR-15-05-OA-0375 info:eu-repo/semantics/altIdentifier/doi/10.4209/aaqr.2015.05.0375 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Taiwan Assoc Aerosol Res-taar |
| publisher.none.fl_str_mv |
Taiwan Assoc Aerosol Res-taar |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781576785952768 |
| score |
12.982451 |