A method to estimate missing AERONET AOD values based on artificial neural networks

Autores
Olcese, Luis Eduardo; Palancar, Gustavo Gerardo; Toselli, Beatriz Margarita
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work, we present a method to predict missing aerosol optical depth (AOD) values at an AERONET station. The aim of the method is to fill gaps and/or to extrapolate temporal series in the station datasets, i.e. to obtain AOD values under cloudy sky conditions and in other situations where there is a temporary or permanent lack of data. To accomplish that, we used historical AOD values at two stations, air mass trajectories passing through both of them (calculated by using the HYSPLIT model) and ANN calculations to process all the information. The variables included in the neural network training were the station numbers, parameters representing the annual average trend of meteorological conditions, the number of hours and the distance traveled by the air mass between the stations, and the arrival height of the air mass. The method was firstly applied to predict AOD at 440 nm in 9 stations located in the East Coast of the US, during the years 1999–2012. The coefficient of determination r2 between measured and calculated AOD values was 0.855, which show the good performance of the method. Besides, this result represents a remarkable improvement compared to three simple approaches. To further validate the method, we applied it to another region (Iberian Peninsula) with different characteristics (lower density of AERONET stations, different meteorology, and lower wind field spatial resolution). Although the results are still good (r2 = 0.67), the performance of the method was affected by these characteristics. Considering the obtained results, this method can be used as a powerful tool to predict AOD values in several conditions. The methodology can also be easily adapted to predict AOD values at other wavelengths or other aerosol optical properties.
Fil: Olcese, Luis Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Palancar, Gustavo Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Toselli, Beatriz Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Materia
Aod Prediction
Eastern Us Region
Iberian Peninsula Region
Hysplit
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/44388

id CONICETDig_7443f19b196b39bed1ad4d8edf55fd2d
oai_identifier_str oai:ri.conicet.gov.ar:11336/44388
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A method to estimate missing AERONET AOD values based on artificial neural networksOlcese, Luis EduardoPalancar, Gustavo GerardoToselli, Beatriz MargaritaAod PredictionEastern Us RegionIberian Peninsula RegionHysplithttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1In this work, we present a method to predict missing aerosol optical depth (AOD) values at an AERONET station. The aim of the method is to fill gaps and/or to extrapolate temporal series in the station datasets, i.e. to obtain AOD values under cloudy sky conditions and in other situations where there is a temporary or permanent lack of data. To accomplish that, we used historical AOD values at two stations, air mass trajectories passing through both of them (calculated by using the HYSPLIT model) and ANN calculations to process all the information. The variables included in the neural network training were the station numbers, parameters representing the annual average trend of meteorological conditions, the number of hours and the distance traveled by the air mass between the stations, and the arrival height of the air mass. The method was firstly applied to predict AOD at 440 nm in 9 stations located in the East Coast of the US, during the years 1999–2012. The coefficient of determination r2 between measured and calculated AOD values was 0.855, which show the good performance of the method. Besides, this result represents a remarkable improvement compared to three simple approaches. To further validate the method, we applied it to another region (Iberian Peninsula) with different characteristics (lower density of AERONET stations, different meteorology, and lower wind field spatial resolution). Although the results are still good (r2 = 0.67), the performance of the method was affected by these characteristics. Considering the obtained results, this method can be used as a powerful tool to predict AOD values in several conditions. The methodology can also be easily adapted to predict AOD values at other wavelengths or other aerosol optical properties.Fil: Olcese, Luis Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Palancar, Gustavo Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Toselli, Beatriz Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaPergamon-Elsevier Science Ltd2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44388Olcese, Luis Eduardo; Palancar, Gustavo Gerardo; Toselli, Beatriz Margarita; A method to estimate missing AERONET AOD values based on artificial neural networks; Pergamon-Elsevier Science Ltd; Atmospheric Environment; 113; 7-2015; 140-1501352-2310CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1352231015300832info:eu-repo/semantics/altIdentifier/doi/10.1016/j.atmosenv.2015.05.009info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:37Zoai:ri.conicet.gov.ar:11336/44388instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:38.038CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A method to estimate missing AERONET AOD values based on artificial neural networks
title A method to estimate missing AERONET AOD values based on artificial neural networks
spellingShingle A method to estimate missing AERONET AOD values based on artificial neural networks
Olcese, Luis Eduardo
Aod Prediction
Eastern Us Region
Iberian Peninsula Region
Hysplit
title_short A method to estimate missing AERONET AOD values based on artificial neural networks
title_full A method to estimate missing AERONET AOD values based on artificial neural networks
title_fullStr A method to estimate missing AERONET AOD values based on artificial neural networks
title_full_unstemmed A method to estimate missing AERONET AOD values based on artificial neural networks
title_sort A method to estimate missing AERONET AOD values based on artificial neural networks
dc.creator.none.fl_str_mv Olcese, Luis Eduardo
Palancar, Gustavo Gerardo
Toselli, Beatriz Margarita
author Olcese, Luis Eduardo
author_facet Olcese, Luis Eduardo
Palancar, Gustavo Gerardo
Toselli, Beatriz Margarita
author_role author
author2 Palancar, Gustavo Gerardo
Toselli, Beatriz Margarita
author2_role author
author
dc.subject.none.fl_str_mv Aod Prediction
Eastern Us Region
Iberian Peninsula Region
Hysplit
topic Aod Prediction
Eastern Us Region
Iberian Peninsula Region
Hysplit
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work, we present a method to predict missing aerosol optical depth (AOD) values at an AERONET station. The aim of the method is to fill gaps and/or to extrapolate temporal series in the station datasets, i.e. to obtain AOD values under cloudy sky conditions and in other situations where there is a temporary or permanent lack of data. To accomplish that, we used historical AOD values at two stations, air mass trajectories passing through both of them (calculated by using the HYSPLIT model) and ANN calculations to process all the information. The variables included in the neural network training were the station numbers, parameters representing the annual average trend of meteorological conditions, the number of hours and the distance traveled by the air mass between the stations, and the arrival height of the air mass. The method was firstly applied to predict AOD at 440 nm in 9 stations located in the East Coast of the US, during the years 1999–2012. The coefficient of determination r2 between measured and calculated AOD values was 0.855, which show the good performance of the method. Besides, this result represents a remarkable improvement compared to three simple approaches. To further validate the method, we applied it to another region (Iberian Peninsula) with different characteristics (lower density of AERONET stations, different meteorology, and lower wind field spatial resolution). Although the results are still good (r2 = 0.67), the performance of the method was affected by these characteristics. Considering the obtained results, this method can be used as a powerful tool to predict AOD values in several conditions. The methodology can also be easily adapted to predict AOD values at other wavelengths or other aerosol optical properties.
Fil: Olcese, Luis Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Palancar, Gustavo Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Toselli, Beatriz Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
description In this work, we present a method to predict missing aerosol optical depth (AOD) values at an AERONET station. The aim of the method is to fill gaps and/or to extrapolate temporal series in the station datasets, i.e. to obtain AOD values under cloudy sky conditions and in other situations where there is a temporary or permanent lack of data. To accomplish that, we used historical AOD values at two stations, air mass trajectories passing through both of them (calculated by using the HYSPLIT model) and ANN calculations to process all the information. The variables included in the neural network training were the station numbers, parameters representing the annual average trend of meteorological conditions, the number of hours and the distance traveled by the air mass between the stations, and the arrival height of the air mass. The method was firstly applied to predict AOD at 440 nm in 9 stations located in the East Coast of the US, during the years 1999–2012. The coefficient of determination r2 between measured and calculated AOD values was 0.855, which show the good performance of the method. Besides, this result represents a remarkable improvement compared to three simple approaches. To further validate the method, we applied it to another region (Iberian Peninsula) with different characteristics (lower density of AERONET stations, different meteorology, and lower wind field spatial resolution). Although the results are still good (r2 = 0.67), the performance of the method was affected by these characteristics. Considering the obtained results, this method can be used as a powerful tool to predict AOD values in several conditions. The methodology can also be easily adapted to predict AOD values at other wavelengths or other aerosol optical properties.
publishDate 2015
dc.date.none.fl_str_mv 2015-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/44388
Olcese, Luis Eduardo; Palancar, Gustavo Gerardo; Toselli, Beatriz Margarita; A method to estimate missing AERONET AOD values based on artificial neural networks; Pergamon-Elsevier Science Ltd; Atmospheric Environment; 113; 7-2015; 140-150
1352-2310
CONICET Digital
CONICET
url http://hdl.handle.net/11336/44388
identifier_str_mv Olcese, Luis Eduardo; Palancar, Gustavo Gerardo; Toselli, Beatriz Margarita; A method to estimate missing AERONET AOD values based on artificial neural networks; Pergamon-Elsevier Science Ltd; Atmospheric Environment; 113; 7-2015; 140-150
1352-2310
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1352231015300832
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.atmosenv.2015.05.009
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613938126258176
score 13.070432