Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles

Autores
Baricic, Miran; Nuñez, Jorge Martín; Aguirre, Myriam Haydee; Hrabovsky, David; Seydou, Mahamadou; Meneghini, Carlo; Peddis, Davide; Ammar, Souad
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The polyol synthesis of CoO nanoparticles (NPs) is typically conducted by dissolving and heating cobalt acetate tetrahydrate and water in diethylene glycol (DEG). This process yields aggregates of approximately 100 nm made of partially aligned primary crystals. However, the synthesis demands careful temperature control to allow the nucleation of CoO while simultaneously preventing reduction, caused by the activity of DEG. This restriction hinders the flexibility to freely adjust synthesis conditions, impeding the ability to obtain particles with varied morpho-structural properties, which, in turn, directly impact chemical and physical attributes. In this context, the growth of CoO NPs in polyol was studied focusing on the effect of the polyol chain length and the synthesis temperature at two different water/cations ratios. During this investigation, we found that longer polyol chains remove the previous limits of the method, allowing the tuning of aggregate size (20–150 nm), shape (spherical-octahedral), and crystalline length (8–35 nm). Regarding the characterization, our focus revolved around investigating the magnetic properties inherent in the synthesized products. From this point of view, two pivotal findings emerged. Firstly, we identified small quantities of a layered hydroxide ferromagnetic intermediate, which acted as interference in our measurements. This intermediate exhibited magnetic properties consistent with features observed in other publications on CoO produced in systems compatible with the intermediate formation. Optimal synthetic conditions that prevent the impurity from forming were found. This resolution clarifies several ambiguities existing in literature about CoO low-temperature magnetic behavior. Secondly, a regular relationship of the NPs´ TN with their crystallite size was found, allowing us to regulate TN over ~ 80 K. For the first time, a branching was found in this structure-dependent magnetic feature, with samples of spheroidal morphology consistently having lower magnetic temperatures, when compared to samples with faceted/octahedral shape, providing compelling evidence for a novel physical parameter influencing the TN of a material. These two findings contribute to the understanding of the fundamental properties of CoO and antiferromagnetic materials.
Fil: Baricic, Miran. Università Roma Tre Iii. Dipartimento Di Scienze.; Italia. Universite de Paris; Francia
Fil: Nuñez, Jorge Martín. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Universidad de Zaragoza. Facultad de Ciencias; España
Fil: Aguirre, Myriam Haydee. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Universidad de Zaragoza. Facultad de Ciencias; España
Fil: Hrabovsky, David. Universite de Paris; Francia
Fil: Seydou, Mahamadou. Universite de Paris; Francia
Fil: Meneghini, Carlo. Università Roma Tre Iii. Dipartimento Di Scienze.; Italia
Fil: Peddis, Davide. Università degli Studi di Genova; Italia
Fil: Ammar, Souad. Universite de Paris; Francia
Materia
Magnetic Nanoparticles
Cobalt oxide
EELS
Polyol
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/265046

id CONICETDig_7cea080baee7f2ebe5071e6c1e113a45
oai_identifier_str oai:ri.conicet.gov.ar:11336/265046
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticlesBaricic, MiranNuñez, Jorge MartínAguirre, Myriam HaydeeHrabovsky, DavidSeydou, MahamadouMeneghini, CarloPeddis, DavideAmmar, SouadMagnetic NanoparticlesCobalt oxideEELSPolyolhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The polyol synthesis of CoO nanoparticles (NPs) is typically conducted by dissolving and heating cobalt acetate tetrahydrate and water in diethylene glycol (DEG). This process yields aggregates of approximately 100 nm made of partially aligned primary crystals. However, the synthesis demands careful temperature control to allow the nucleation of CoO while simultaneously preventing reduction, caused by the activity of DEG. This restriction hinders the flexibility to freely adjust synthesis conditions, impeding the ability to obtain particles with varied morpho-structural properties, which, in turn, directly impact chemical and physical attributes. In this context, the growth of CoO NPs in polyol was studied focusing on the effect of the polyol chain length and the synthesis temperature at two different water/cations ratios. During this investigation, we found that longer polyol chains remove the previous limits of the method, allowing the tuning of aggregate size (20–150 nm), shape (spherical-octahedral), and crystalline length (8–35 nm). Regarding the characterization, our focus revolved around investigating the magnetic properties inherent in the synthesized products. From this point of view, two pivotal findings emerged. Firstly, we identified small quantities of a layered hydroxide ferromagnetic intermediate, which acted as interference in our measurements. This intermediate exhibited magnetic properties consistent with features observed in other publications on CoO produced in systems compatible with the intermediate formation. Optimal synthetic conditions that prevent the impurity from forming were found. This resolution clarifies several ambiguities existing in literature about CoO low-temperature magnetic behavior. Secondly, a regular relationship of the NPs´ TN with their crystallite size was found, allowing us to regulate TN over ~ 80 K. For the first time, a branching was found in this structure-dependent magnetic feature, with samples of spheroidal morphology consistently having lower magnetic temperatures, when compared to samples with faceted/octahedral shape, providing compelling evidence for a novel physical parameter influencing the TN of a material. These two findings contribute to the understanding of the fundamental properties of CoO and antiferromagnetic materials.Fil: Baricic, Miran. Università Roma Tre Iii. Dipartimento Di Scienze.; Italia. Universite de Paris; FranciaFil: Nuñez, Jorge Martín. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Universidad de Zaragoza. Facultad de Ciencias; EspañaFil: Aguirre, Myriam Haydee. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Universidad de Zaragoza. Facultad de Ciencias; EspañaFil: Hrabovsky, David. Universite de Paris; FranciaFil: Seydou, Mahamadou. Universite de Paris; FranciaFil: Meneghini, Carlo. Università Roma Tre Iii. Dipartimento Di Scienze.; ItaliaFil: Peddis, Davide. Università degli Studi di Genova; ItaliaFil: Ammar, Souad. Universite de Paris; FranciaNature2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265046Baricic, Miran; Nuñez, Jorge Martín; Aguirre, Myriam Haydee; Hrabovsky, David; Seydou, Mahamadou; et al.; Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles; Nature; Scientific Reports; 14; 1; 5-2024; 1-122045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-024-54892-2info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-024-54892-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:53Zoai:ri.conicet.gov.ar:11336/265046instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:53.638CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles
title Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles
spellingShingle Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles
Baricic, Miran
Magnetic Nanoparticles
Cobalt oxide
EELS
Polyol
title_short Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles
title_full Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles
title_fullStr Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles
title_full_unstemmed Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles
title_sort Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles
dc.creator.none.fl_str_mv Baricic, Miran
Nuñez, Jorge Martín
Aguirre, Myriam Haydee
Hrabovsky, David
Seydou, Mahamadou
Meneghini, Carlo
Peddis, Davide
Ammar, Souad
author Baricic, Miran
author_facet Baricic, Miran
Nuñez, Jorge Martín
Aguirre, Myriam Haydee
Hrabovsky, David
Seydou, Mahamadou
Meneghini, Carlo
Peddis, Davide
Ammar, Souad
author_role author
author2 Nuñez, Jorge Martín
Aguirre, Myriam Haydee
Hrabovsky, David
Seydou, Mahamadou
Meneghini, Carlo
Peddis, Davide
Ammar, Souad
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Magnetic Nanoparticles
Cobalt oxide
EELS
Polyol
topic Magnetic Nanoparticles
Cobalt oxide
EELS
Polyol
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The polyol synthesis of CoO nanoparticles (NPs) is typically conducted by dissolving and heating cobalt acetate tetrahydrate and water in diethylene glycol (DEG). This process yields aggregates of approximately 100 nm made of partially aligned primary crystals. However, the synthesis demands careful temperature control to allow the nucleation of CoO while simultaneously preventing reduction, caused by the activity of DEG. This restriction hinders the flexibility to freely adjust synthesis conditions, impeding the ability to obtain particles with varied morpho-structural properties, which, in turn, directly impact chemical and physical attributes. In this context, the growth of CoO NPs in polyol was studied focusing on the effect of the polyol chain length and the synthesis temperature at two different water/cations ratios. During this investigation, we found that longer polyol chains remove the previous limits of the method, allowing the tuning of aggregate size (20–150 nm), shape (spherical-octahedral), and crystalline length (8–35 nm). Regarding the characterization, our focus revolved around investigating the magnetic properties inherent in the synthesized products. From this point of view, two pivotal findings emerged. Firstly, we identified small quantities of a layered hydroxide ferromagnetic intermediate, which acted as interference in our measurements. This intermediate exhibited magnetic properties consistent with features observed in other publications on CoO produced in systems compatible with the intermediate formation. Optimal synthetic conditions that prevent the impurity from forming were found. This resolution clarifies several ambiguities existing in literature about CoO low-temperature magnetic behavior. Secondly, a regular relationship of the NPs´ TN with their crystallite size was found, allowing us to regulate TN over ~ 80 K. For the first time, a branching was found in this structure-dependent magnetic feature, with samples of spheroidal morphology consistently having lower magnetic temperatures, when compared to samples with faceted/octahedral shape, providing compelling evidence for a novel physical parameter influencing the TN of a material. These two findings contribute to the understanding of the fundamental properties of CoO and antiferromagnetic materials.
Fil: Baricic, Miran. Università Roma Tre Iii. Dipartimento Di Scienze.; Italia. Universite de Paris; Francia
Fil: Nuñez, Jorge Martín. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Universidad de Zaragoza. Facultad de Ciencias; España
Fil: Aguirre, Myriam Haydee. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Universidad de Zaragoza. Facultad de Ciencias; España
Fil: Hrabovsky, David. Universite de Paris; Francia
Fil: Seydou, Mahamadou. Universite de Paris; Francia
Fil: Meneghini, Carlo. Università Roma Tre Iii. Dipartimento Di Scienze.; Italia
Fil: Peddis, Davide. Università degli Studi di Genova; Italia
Fil: Ammar, Souad. Universite de Paris; Francia
description The polyol synthesis of CoO nanoparticles (NPs) is typically conducted by dissolving and heating cobalt acetate tetrahydrate and water in diethylene glycol (DEG). This process yields aggregates of approximately 100 nm made of partially aligned primary crystals. However, the synthesis demands careful temperature control to allow the nucleation of CoO while simultaneously preventing reduction, caused by the activity of DEG. This restriction hinders the flexibility to freely adjust synthesis conditions, impeding the ability to obtain particles with varied morpho-structural properties, which, in turn, directly impact chemical and physical attributes. In this context, the growth of CoO NPs in polyol was studied focusing on the effect of the polyol chain length and the synthesis temperature at two different water/cations ratios. During this investigation, we found that longer polyol chains remove the previous limits of the method, allowing the tuning of aggregate size (20–150 nm), shape (spherical-octahedral), and crystalline length (8–35 nm). Regarding the characterization, our focus revolved around investigating the magnetic properties inherent in the synthesized products. From this point of view, two pivotal findings emerged. Firstly, we identified small quantities of a layered hydroxide ferromagnetic intermediate, which acted as interference in our measurements. This intermediate exhibited magnetic properties consistent with features observed in other publications on CoO produced in systems compatible with the intermediate formation. Optimal synthetic conditions that prevent the impurity from forming were found. This resolution clarifies several ambiguities existing in literature about CoO low-temperature magnetic behavior. Secondly, a regular relationship of the NPs´ TN with their crystallite size was found, allowing us to regulate TN over ~ 80 K. For the first time, a branching was found in this structure-dependent magnetic feature, with samples of spheroidal morphology consistently having lower magnetic temperatures, when compared to samples with faceted/octahedral shape, providing compelling evidence for a novel physical parameter influencing the TN of a material. These two findings contribute to the understanding of the fundamental properties of CoO and antiferromagnetic materials.
publishDate 2024
dc.date.none.fl_str_mv 2024-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/265046
Baricic, Miran; Nuñez, Jorge Martín; Aguirre, Myriam Haydee; Hrabovsky, David; Seydou, Mahamadou; et al.; Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles; Nature; Scientific Reports; 14; 1; 5-2024; 1-12
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/265046
identifier_str_mv Baricic, Miran; Nuñez, Jorge Martín; Aguirre, Myriam Haydee; Hrabovsky, David; Seydou, Mahamadou; et al.; Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles; Nature; Scientific Reports; 14; 1; 5-2024; 1-12
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-024-54892-2
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-024-54892-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature
publisher.none.fl_str_mv Nature
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614425398476800
score 13.070432