Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles
- Autores
- Baricic, Miran; Nuñez, Jorge Martín; Aguirre, Myriam Haydee; Hrabovsky, David; Seydou, Mahamadou; Meneghini, Carlo; Peddis, Davide; Ammar, Souad
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The polyol synthesis of CoO nanoparticles (NPs) is typically conducted by dissolving and heating cobalt acetate tetrahydrate and water in diethylene glycol (DEG). This process yields aggregates of approximately 100 nm made of partially aligned primary crystals. However, the synthesis demands careful temperature control to allow the nucleation of CoO while simultaneously preventing reduction, caused by the activity of DEG. This restriction hinders the flexibility to freely adjust synthesis conditions, impeding the ability to obtain particles with varied morpho-structural properties, which, in turn, directly impact chemical and physical attributes. In this context, the growth of CoO NPs in polyol was studied focusing on the effect of the polyol chain length and the synthesis temperature at two different water/cations ratios. During this investigation, we found that longer polyol chains remove the previous limits of the method, allowing the tuning of aggregate size (20–150 nm), shape (spherical-octahedral), and crystalline length (8–35 nm). Regarding the characterization, our focus revolved around investigating the magnetic properties inherent in the synthesized products. From this point of view, two pivotal findings emerged. Firstly, we identified small quantities of a layered hydroxide ferromagnetic intermediate, which acted as interference in our measurements. This intermediate exhibited magnetic properties consistent with features observed in other publications on CoO produced in systems compatible with the intermediate formation. Optimal synthetic conditions that prevent the impurity from forming were found. This resolution clarifies several ambiguities existing in literature about CoO low-temperature magnetic behavior. Secondly, a regular relationship of the NPs´ TN with their crystallite size was found, allowing us to regulate TN over ~ 80 K. For the first time, a branching was found in this structure-dependent magnetic feature, with samples of spheroidal morphology consistently having lower magnetic temperatures, when compared to samples with faceted/octahedral shape, providing compelling evidence for a novel physical parameter influencing the TN of a material. These two findings contribute to the understanding of the fundamental properties of CoO and antiferromagnetic materials.
Fil: Baricic, Miran. Università Roma Tre Iii. Dipartimento Di Scienze.; Italia. Universite de Paris; Francia
Fil: Nuñez, Jorge Martín. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Universidad de Zaragoza. Facultad de Ciencias; España
Fil: Aguirre, Myriam Haydee. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Universidad de Zaragoza. Facultad de Ciencias; España
Fil: Hrabovsky, David. Universite de Paris; Francia
Fil: Seydou, Mahamadou. Universite de Paris; Francia
Fil: Meneghini, Carlo. Università Roma Tre Iii. Dipartimento Di Scienze.; Italia
Fil: Peddis, Davide. Università degli Studi di Genova; Italia
Fil: Ammar, Souad. Universite de Paris; Francia - Materia
-
Magnetic Nanoparticles
Cobalt oxide
EELS
Polyol - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/265046
Ver los metadatos del registro completo
id |
CONICETDig_7cea080baee7f2ebe5071e6c1e113a45 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/265046 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticlesBaricic, MiranNuñez, Jorge MartínAguirre, Myriam HaydeeHrabovsky, DavidSeydou, MahamadouMeneghini, CarloPeddis, DavideAmmar, SouadMagnetic NanoparticlesCobalt oxideEELSPolyolhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The polyol synthesis of CoO nanoparticles (NPs) is typically conducted by dissolving and heating cobalt acetate tetrahydrate and water in diethylene glycol (DEG). This process yields aggregates of approximately 100 nm made of partially aligned primary crystals. However, the synthesis demands careful temperature control to allow the nucleation of CoO while simultaneously preventing reduction, caused by the activity of DEG. This restriction hinders the flexibility to freely adjust synthesis conditions, impeding the ability to obtain particles with varied morpho-structural properties, which, in turn, directly impact chemical and physical attributes. In this context, the growth of CoO NPs in polyol was studied focusing on the effect of the polyol chain length and the synthesis temperature at two different water/cations ratios. During this investigation, we found that longer polyol chains remove the previous limits of the method, allowing the tuning of aggregate size (20–150 nm), shape (spherical-octahedral), and crystalline length (8–35 nm). Regarding the characterization, our focus revolved around investigating the magnetic properties inherent in the synthesized products. From this point of view, two pivotal findings emerged. Firstly, we identified small quantities of a layered hydroxide ferromagnetic intermediate, which acted as interference in our measurements. This intermediate exhibited magnetic properties consistent with features observed in other publications on CoO produced in systems compatible with the intermediate formation. Optimal synthetic conditions that prevent the impurity from forming were found. This resolution clarifies several ambiguities existing in literature about CoO low-temperature magnetic behavior. Secondly, a regular relationship of the NPs´ TN with their crystallite size was found, allowing us to regulate TN over ~ 80 K. For the first time, a branching was found in this structure-dependent magnetic feature, with samples of spheroidal morphology consistently having lower magnetic temperatures, when compared to samples with faceted/octahedral shape, providing compelling evidence for a novel physical parameter influencing the TN of a material. These two findings contribute to the understanding of the fundamental properties of CoO and antiferromagnetic materials.Fil: Baricic, Miran. Università Roma Tre Iii. Dipartimento Di Scienze.; Italia. Universite de Paris; FranciaFil: Nuñez, Jorge Martín. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Universidad de Zaragoza. Facultad de Ciencias; EspañaFil: Aguirre, Myriam Haydee. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Universidad de Zaragoza. Facultad de Ciencias; EspañaFil: Hrabovsky, David. Universite de Paris; FranciaFil: Seydou, Mahamadou. Universite de Paris; FranciaFil: Meneghini, Carlo. Università Roma Tre Iii. Dipartimento Di Scienze.; ItaliaFil: Peddis, Davide. Università degli Studi di Genova; ItaliaFil: Ammar, Souad. Universite de Paris; FranciaNature2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265046Baricic, Miran; Nuñez, Jorge Martín; Aguirre, Myriam Haydee; Hrabovsky, David; Seydou, Mahamadou; et al.; Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles; Nature; Scientific Reports; 14; 1; 5-2024; 1-122045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-024-54892-2info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-024-54892-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:53Zoai:ri.conicet.gov.ar:11336/265046instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:53.638CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles |
title |
Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles |
spellingShingle |
Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles Baricic, Miran Magnetic Nanoparticles Cobalt oxide EELS Polyol |
title_short |
Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles |
title_full |
Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles |
title_fullStr |
Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles |
title_full_unstemmed |
Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles |
title_sort |
Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles |
dc.creator.none.fl_str_mv |
Baricic, Miran Nuñez, Jorge Martín Aguirre, Myriam Haydee Hrabovsky, David Seydou, Mahamadou Meneghini, Carlo Peddis, Davide Ammar, Souad |
author |
Baricic, Miran |
author_facet |
Baricic, Miran Nuñez, Jorge Martín Aguirre, Myriam Haydee Hrabovsky, David Seydou, Mahamadou Meneghini, Carlo Peddis, Davide Ammar, Souad |
author_role |
author |
author2 |
Nuñez, Jorge Martín Aguirre, Myriam Haydee Hrabovsky, David Seydou, Mahamadou Meneghini, Carlo Peddis, Davide Ammar, Souad |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Magnetic Nanoparticles Cobalt oxide EELS Polyol |
topic |
Magnetic Nanoparticles Cobalt oxide EELS Polyol |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The polyol synthesis of CoO nanoparticles (NPs) is typically conducted by dissolving and heating cobalt acetate tetrahydrate and water in diethylene glycol (DEG). This process yields aggregates of approximately 100 nm made of partially aligned primary crystals. However, the synthesis demands careful temperature control to allow the nucleation of CoO while simultaneously preventing reduction, caused by the activity of DEG. This restriction hinders the flexibility to freely adjust synthesis conditions, impeding the ability to obtain particles with varied morpho-structural properties, which, in turn, directly impact chemical and physical attributes. In this context, the growth of CoO NPs in polyol was studied focusing on the effect of the polyol chain length and the synthesis temperature at two different water/cations ratios. During this investigation, we found that longer polyol chains remove the previous limits of the method, allowing the tuning of aggregate size (20–150 nm), shape (spherical-octahedral), and crystalline length (8–35 nm). Regarding the characterization, our focus revolved around investigating the magnetic properties inherent in the synthesized products. From this point of view, two pivotal findings emerged. Firstly, we identified small quantities of a layered hydroxide ferromagnetic intermediate, which acted as interference in our measurements. This intermediate exhibited magnetic properties consistent with features observed in other publications on CoO produced in systems compatible with the intermediate formation. Optimal synthetic conditions that prevent the impurity from forming were found. This resolution clarifies several ambiguities existing in literature about CoO low-temperature magnetic behavior. Secondly, a regular relationship of the NPs´ TN with their crystallite size was found, allowing us to regulate TN over ~ 80 K. For the first time, a branching was found in this structure-dependent magnetic feature, with samples of spheroidal morphology consistently having lower magnetic temperatures, when compared to samples with faceted/octahedral shape, providing compelling evidence for a novel physical parameter influencing the TN of a material. These two findings contribute to the understanding of the fundamental properties of CoO and antiferromagnetic materials. Fil: Baricic, Miran. Università Roma Tre Iii. Dipartimento Di Scienze.; Italia. Universite de Paris; Francia Fil: Nuñez, Jorge Martín. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Universidad de Zaragoza. Facultad de Ciencias; España Fil: Aguirre, Myriam Haydee. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Universidad de Zaragoza. Facultad de Ciencias; España Fil: Hrabovsky, David. Universite de Paris; Francia Fil: Seydou, Mahamadou. Universite de Paris; Francia Fil: Meneghini, Carlo. Università Roma Tre Iii. Dipartimento Di Scienze.; Italia Fil: Peddis, Davide. Università degli Studi di Genova; Italia Fil: Ammar, Souad. Universite de Paris; Francia |
description |
The polyol synthesis of CoO nanoparticles (NPs) is typically conducted by dissolving and heating cobalt acetate tetrahydrate and water in diethylene glycol (DEG). This process yields aggregates of approximately 100 nm made of partially aligned primary crystals. However, the synthesis demands careful temperature control to allow the nucleation of CoO while simultaneously preventing reduction, caused by the activity of DEG. This restriction hinders the flexibility to freely adjust synthesis conditions, impeding the ability to obtain particles with varied morpho-structural properties, which, in turn, directly impact chemical and physical attributes. In this context, the growth of CoO NPs in polyol was studied focusing on the effect of the polyol chain length and the synthesis temperature at two different water/cations ratios. During this investigation, we found that longer polyol chains remove the previous limits of the method, allowing the tuning of aggregate size (20–150 nm), shape (spherical-octahedral), and crystalline length (8–35 nm). Regarding the characterization, our focus revolved around investigating the magnetic properties inherent in the synthesized products. From this point of view, two pivotal findings emerged. Firstly, we identified small quantities of a layered hydroxide ferromagnetic intermediate, which acted as interference in our measurements. This intermediate exhibited magnetic properties consistent with features observed in other publications on CoO produced in systems compatible with the intermediate formation. Optimal synthetic conditions that prevent the impurity from forming were found. This resolution clarifies several ambiguities existing in literature about CoO low-temperature magnetic behavior. Secondly, a regular relationship of the NPs´ TN with their crystallite size was found, allowing us to regulate TN over ~ 80 K. For the first time, a branching was found in this structure-dependent magnetic feature, with samples of spheroidal morphology consistently having lower magnetic temperatures, when compared to samples with faceted/octahedral shape, providing compelling evidence for a novel physical parameter influencing the TN of a material. These two findings contribute to the understanding of the fundamental properties of CoO and antiferromagnetic materials. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/265046 Baricic, Miran; Nuñez, Jorge Martín; Aguirre, Myriam Haydee; Hrabovsky, David; Seydou, Mahamadou; et al.; Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles; Nature; Scientific Reports; 14; 1; 5-2024; 1-12 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/265046 |
identifier_str_mv |
Baricic, Miran; Nuñez, Jorge Martín; Aguirre, Myriam Haydee; Hrabovsky, David; Seydou, Mahamadou; et al.; Advancements in polyol synthesis: expanding chemical horizons and Néel temperature tuning of CoO nanoparticles; Nature; Scientific Reports; 14; 1; 5-2024; 1-12 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-024-54892-2 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-024-54892-2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature |
publisher.none.fl_str_mv |
Nature |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614425398476800 |
score |
13.070432 |