Improving phenolic compound extraction from Arnica montana flowers through multivariate optimization of heat and ultrasound-assisted methods
- Autores
- Garcia Oliveira, Paula; Chamorro, Franklin; Simal Gandara, Jesus; Prieto, Miguel A.; Cassani, Lucía Victoria
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This study aimed to optimize phenolic compound extraction from Arnica montana (AM) L. flowers,comparing heat- and ultrasound-assisted extraction (HAE and UAE) through a multivariateapproach. Critical parameters, including time, temperature or ultrasonic power, and ethanol concentration, were evaluated through a circumscribed central composite design. Unsupervised multivariate analysis of LC-MS/MS data identified key extraction conditions influencing the phenolicprofile. Response surface methodology (RSM) determined optimal levels of enhancing yield andtotal phenolic content. Among the 24 identified phenolic compounds, dicaffeoylquinic acid wasthe most abundant. Ethanol concentration proved crucial in extracting specific phenolic compounds, supported by multivariate and RSM analyses. Optimal HAE conditions outperformedUAE, resulting in a 26% increase in phenolic compounds. Utilizing extraction cycles under theseconditions, especially two cycles for HAE and three for UAE, surpassed traditional Soxhlet extraction, indicating potential industrial applications for AM flower extracts with improved efficiency and resource utilization compared to conventional methods.
Fil: Garcia Oliveira, Paula. Universidad de Vigo. Facultad de Ciencias de Ourense. Departamento de Química Analitica y Alimentaria; España
Fil: Chamorro, Franklin. Universidad de Vigo. Facultad de Ciencias de Ourense. Departamento de Química Analitica y Alimentaria; España
Fil: Simal Gandara, Jesus. Universidad de Vigo. Facultad de Ciencias de Ourense. Departamento de Química Analitica y Alimentaria; España
Fil: Prieto, Miguel A.. Universidad de Vigo. Facultad de Ciencias de Ourense. Departamento de Química Analitica y Alimentaria; España
Fil: Cassani, Lucía Victoria. Universidad de Vigo. Facultad de Ciencias de Ourense. Departamento de Química Analitica y Alimentaria; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina - Materia
-
BIOACTIVE COMPOUNDS
CHEMOMETRIC ANALYSIS
OPTIMIZATION
EFFICIENT PROCESSES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/265187
Ver los metadatos del registro completo
id |
CONICETDig_7cd1322b030ee766d9609299e69fde45 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/265187 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Improving phenolic compound extraction from Arnica montana flowers through multivariate optimization of heat and ultrasound-assisted methodsGarcia Oliveira, PaulaChamorro, FranklinSimal Gandara, JesusPrieto, Miguel A.Cassani, Lucía VictoriaBIOACTIVE COMPOUNDSCHEMOMETRIC ANALYSISOPTIMIZATIONEFFICIENT PROCESSEShttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2This study aimed to optimize phenolic compound extraction from Arnica montana (AM) L. flowers,comparing heat- and ultrasound-assisted extraction (HAE and UAE) through a multivariateapproach. Critical parameters, including time, temperature or ultrasonic power, and ethanol concentration, were evaluated through a circumscribed central composite design. Unsupervised multivariate analysis of LC-MS/MS data identified key extraction conditions influencing the phenolicprofile. Response surface methodology (RSM) determined optimal levels of enhancing yield andtotal phenolic content. Among the 24 identified phenolic compounds, dicaffeoylquinic acid wasthe most abundant. Ethanol concentration proved crucial in extracting specific phenolic compounds, supported by multivariate and RSM analyses. Optimal HAE conditions outperformedUAE, resulting in a 26% increase in phenolic compounds. Utilizing extraction cycles under theseconditions, especially two cycles for HAE and three for UAE, surpassed traditional Soxhlet extraction, indicating potential industrial applications for AM flower extracts with improved efficiency and resource utilization compared to conventional methods.Fil: Garcia Oliveira, Paula. Universidad de Vigo. Facultad de Ciencias de Ourense. Departamento de Química Analitica y Alimentaria; EspañaFil: Chamorro, Franklin. Universidad de Vigo. Facultad de Ciencias de Ourense. Departamento de Química Analitica y Alimentaria; EspañaFil: Simal Gandara, Jesus. Universidad de Vigo. Facultad de Ciencias de Ourense. Departamento de Química Analitica y Alimentaria; EspañaFil: Prieto, Miguel A.. Universidad de Vigo. Facultad de Ciencias de Ourense. Departamento de Química Analitica y Alimentaria; EspañaFil: Cassani, Lucía Victoria. Universidad de Vigo. Facultad de Ciencias de Ourense. Departamento de Química Analitica y Alimentaria; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaElsevier2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265187Garcia Oliveira, Paula; Chamorro, Franklin; Simal Gandara, Jesus; Prieto, Miguel A.; Cassani, Lucía Victoria; Improving phenolic compound extraction from Arnica montana flowers through multivariate optimization of heat and ultrasound-assisted methods; Elsevier; Sustainable Chemistry and Pharmacy; 41; 10-2024; 1-172352-5541CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2352554124002973info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scp.2024.101722info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:51Zoai:ri.conicet.gov.ar:11336/265187instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:51.757CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Improving phenolic compound extraction from Arnica montana flowers through multivariate optimization of heat and ultrasound-assisted methods |
title |
Improving phenolic compound extraction from Arnica montana flowers through multivariate optimization of heat and ultrasound-assisted methods |
spellingShingle |
Improving phenolic compound extraction from Arnica montana flowers through multivariate optimization of heat and ultrasound-assisted methods Garcia Oliveira, Paula BIOACTIVE COMPOUNDS CHEMOMETRIC ANALYSIS OPTIMIZATION EFFICIENT PROCESSES |
title_short |
Improving phenolic compound extraction from Arnica montana flowers through multivariate optimization of heat and ultrasound-assisted methods |
title_full |
Improving phenolic compound extraction from Arnica montana flowers through multivariate optimization of heat and ultrasound-assisted methods |
title_fullStr |
Improving phenolic compound extraction from Arnica montana flowers through multivariate optimization of heat and ultrasound-assisted methods |
title_full_unstemmed |
Improving phenolic compound extraction from Arnica montana flowers through multivariate optimization of heat and ultrasound-assisted methods |
title_sort |
Improving phenolic compound extraction from Arnica montana flowers through multivariate optimization of heat and ultrasound-assisted methods |
dc.creator.none.fl_str_mv |
Garcia Oliveira, Paula Chamorro, Franklin Simal Gandara, Jesus Prieto, Miguel A. Cassani, Lucía Victoria |
author |
Garcia Oliveira, Paula |
author_facet |
Garcia Oliveira, Paula Chamorro, Franklin Simal Gandara, Jesus Prieto, Miguel A. Cassani, Lucía Victoria |
author_role |
author |
author2 |
Chamorro, Franklin Simal Gandara, Jesus Prieto, Miguel A. Cassani, Lucía Victoria |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
BIOACTIVE COMPOUNDS CHEMOMETRIC ANALYSIS OPTIMIZATION EFFICIENT PROCESSES |
topic |
BIOACTIVE COMPOUNDS CHEMOMETRIC ANALYSIS OPTIMIZATION EFFICIENT PROCESSES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This study aimed to optimize phenolic compound extraction from Arnica montana (AM) L. flowers,comparing heat- and ultrasound-assisted extraction (HAE and UAE) through a multivariateapproach. Critical parameters, including time, temperature or ultrasonic power, and ethanol concentration, were evaluated through a circumscribed central composite design. Unsupervised multivariate analysis of LC-MS/MS data identified key extraction conditions influencing the phenolicprofile. Response surface methodology (RSM) determined optimal levels of enhancing yield andtotal phenolic content. Among the 24 identified phenolic compounds, dicaffeoylquinic acid wasthe most abundant. Ethanol concentration proved crucial in extracting specific phenolic compounds, supported by multivariate and RSM analyses. Optimal HAE conditions outperformedUAE, resulting in a 26% increase in phenolic compounds. Utilizing extraction cycles under theseconditions, especially two cycles for HAE and three for UAE, surpassed traditional Soxhlet extraction, indicating potential industrial applications for AM flower extracts with improved efficiency and resource utilization compared to conventional methods. Fil: Garcia Oliveira, Paula. Universidad de Vigo. Facultad de Ciencias de Ourense. Departamento de Química Analitica y Alimentaria; España Fil: Chamorro, Franklin. Universidad de Vigo. Facultad de Ciencias de Ourense. Departamento de Química Analitica y Alimentaria; España Fil: Simal Gandara, Jesus. Universidad de Vigo. Facultad de Ciencias de Ourense. Departamento de Química Analitica y Alimentaria; España Fil: Prieto, Miguel A.. Universidad de Vigo. Facultad de Ciencias de Ourense. Departamento de Química Analitica y Alimentaria; España Fil: Cassani, Lucía Victoria. Universidad de Vigo. Facultad de Ciencias de Ourense. Departamento de Química Analitica y Alimentaria; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina |
description |
This study aimed to optimize phenolic compound extraction from Arnica montana (AM) L. flowers,comparing heat- and ultrasound-assisted extraction (HAE and UAE) through a multivariateapproach. Critical parameters, including time, temperature or ultrasonic power, and ethanol concentration, were evaluated through a circumscribed central composite design. Unsupervised multivariate analysis of LC-MS/MS data identified key extraction conditions influencing the phenolicprofile. Response surface methodology (RSM) determined optimal levels of enhancing yield andtotal phenolic content. Among the 24 identified phenolic compounds, dicaffeoylquinic acid wasthe most abundant. Ethanol concentration proved crucial in extracting specific phenolic compounds, supported by multivariate and RSM analyses. Optimal HAE conditions outperformedUAE, resulting in a 26% increase in phenolic compounds. Utilizing extraction cycles under theseconditions, especially two cycles for HAE and three for UAE, surpassed traditional Soxhlet extraction, indicating potential industrial applications for AM flower extracts with improved efficiency and resource utilization compared to conventional methods. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/265187 Garcia Oliveira, Paula; Chamorro, Franklin; Simal Gandara, Jesus; Prieto, Miguel A.; Cassani, Lucía Victoria; Improving phenolic compound extraction from Arnica montana flowers through multivariate optimization of heat and ultrasound-assisted methods; Elsevier; Sustainable Chemistry and Pharmacy; 41; 10-2024; 1-17 2352-5541 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/265187 |
identifier_str_mv |
Garcia Oliveira, Paula; Chamorro, Franklin; Simal Gandara, Jesus; Prieto, Miguel A.; Cassani, Lucía Victoria; Improving phenolic compound extraction from Arnica montana flowers through multivariate optimization of heat and ultrasound-assisted methods; Elsevier; Sustainable Chemistry and Pharmacy; 41; 10-2024; 1-17 2352-5541 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2352554124002973 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scp.2024.101722 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614193452417024 |
score |
13.070432 |