3D-Printed Poly(ester urethane)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Bioglass Scaffolds for Tissue Engineering Applications

Autores
Lores, Nayla Jimena; Aráoz, Silvina Beatriz; Hung Hung, Yuk Ming Xavier; Talou, Mariano Hernán; Boccaccini, Aldo R.; Abraham, Gustavo Abel; Hermida, Élida B.; Caracciolo, Pablo Christian
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Biodegradable polymers and bioceramics give rise to composite structures that serve as scaffolds to promote tissue regeneration. The current research explores the preparation of biodegradable filaments for additive manufacturing. Bioresorbable segmented poly(ester urethanes) (SPEUs) are easily printable elastomers but lack bioactivity and present low elastic modulus, making them unsuitable for applications such as bone tissue engineering. Strategies such as blending and composite filament production still constitute an important challenge in addressing SPEU limitations. In this work, SPEUpoly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) blends and SPEU-PHBV-Bioglass 45S5® (BG) composite materials were processed into filaments and 3D structures. A comprehensive characterization of their morphology and thermal and mechanical properties is presented. The production of 3D structures based on SPEU-PHBV with excellent dimensional precision was achieved. Although SPEU-PHBV-BG printed structures showed some defects associated with the printing process, the physicochemical, thermal, and mechanical properties of these materials hold promise. The blend composition, BG content and particle size, processing parameters, and blending techniques were carefully managed to ensure that the mechanical behavior of the material remained under control. The incorporation of PHBV in SPEU-PHBV at 70:30 w/w and BG (5 wt%) acted as reinforcement, enhancing both the elastic modulus of the filaments and the compressive mechanical behavior of the 3D matrices. The compressive stress of the printed scaffold was found to be 1.48 ± 0.13 MPa, which is optimal for tissues such as human proximal tibial trabecular bone. Therefore, these materials show potential for use in the design and manufacture of customized structures for bone tissue engineering.
Fil: Lores, Nayla Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Aráoz, Silvina Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; Argentina
Fil: Hung Hung, Yuk Ming Xavier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Talou, Mariano Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Boccaccini, Aldo R.. Universitat Erlangen Nuremberg; Alemania
Fil: Abraham, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Hermida, Élida B.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; Argentina
Fil: Caracciolo, Pablo Christian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Materia
SEGMENTED POLYURETHANES
BIOGLASS
POLY(3-HYDROXYBUTYRATE-CO-3-VALERATE)
FILAMENT PREPARATION
ADDITIVE MANUFACTURING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/256978

id CONICETDig_7c84a6229b8bcfba2e974a734bd22498
oai_identifier_str oai:ri.conicet.gov.ar:11336/256978
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling 3D-Printed Poly(ester urethane)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Bioglass Scaffolds for Tissue Engineering ApplicationsLores, Nayla JimenaAráoz, Silvina BeatrizHung Hung, Yuk Ming XavierTalou, Mariano HernánBoccaccini, Aldo R.Abraham, Gustavo AbelHermida, Élida B.Caracciolo, Pablo ChristianSEGMENTED POLYURETHANESBIOGLASSPOLY(3-HYDROXYBUTYRATE-CO-3-VALERATE)FILAMENT PREPARATIONADDITIVE MANUFACTURINGhttps://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2Biodegradable polymers and bioceramics give rise to composite structures that serve as scaffolds to promote tissue regeneration. The current research explores the preparation of biodegradable filaments for additive manufacturing. Bioresorbable segmented poly(ester urethanes) (SPEUs) are easily printable elastomers but lack bioactivity and present low elastic modulus, making them unsuitable for applications such as bone tissue engineering. Strategies such as blending and composite filament production still constitute an important challenge in addressing SPEU limitations. In this work, SPEUpoly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) blends and SPEU-PHBV-Bioglass 45S5® (BG) composite materials were processed into filaments and 3D structures. A comprehensive characterization of their morphology and thermal and mechanical properties is presented. The production of 3D structures based on SPEU-PHBV with excellent dimensional precision was achieved. Although SPEU-PHBV-BG printed structures showed some defects associated with the printing process, the physicochemical, thermal, and mechanical properties of these materials hold promise. The blend composition, BG content and particle size, processing parameters, and blending techniques were carefully managed to ensure that the mechanical behavior of the material remained under control. The incorporation of PHBV in SPEU-PHBV at 70:30 w/w and BG (5 wt%) acted as reinforcement, enhancing both the elastic modulus of the filaments and the compressive mechanical behavior of the 3D matrices. The compressive stress of the printed scaffold was found to be 1.48 ± 0.13 MPa, which is optimal for tissues such as human proximal tibial trabecular bone. Therefore, these materials show potential for use in the design and manufacture of customized structures for bone tissue engineering.Fil: Lores, Nayla Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Aráoz, Silvina Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; ArgentinaFil: Hung Hung, Yuk Ming Xavier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Talou, Mariano Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Boccaccini, Aldo R.. Universitat Erlangen Nuremberg; AlemaniaFil: Abraham, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Hermida, Élida B.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; ArgentinaFil: Caracciolo, Pablo Christian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaMultidisciplinary Digital Publishing Institute2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256978Lores, Nayla Jimena; Aráoz, Silvina Beatriz; Hung Hung, Yuk Ming Xavier; Talou, Mariano Hernán; Boccaccini, Aldo R.; et al.; 3D-Printed Poly(ester urethane)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Bioglass Scaffolds for Tissue Engineering Applications; Multidisciplinary Digital Publishing Institute; Polymers; 16; 23; 11-2024; 1-142073-4360CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/16/23/3355info:eu-repo/semantics/altIdentifier/doi/10.3390/polym16233355info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:05Zoai:ri.conicet.gov.ar:11336/256978instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:05.558CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv 3D-Printed Poly(ester urethane)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Bioglass Scaffolds for Tissue Engineering Applications
title 3D-Printed Poly(ester urethane)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Bioglass Scaffolds for Tissue Engineering Applications
spellingShingle 3D-Printed Poly(ester urethane)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Bioglass Scaffolds for Tissue Engineering Applications
Lores, Nayla Jimena
SEGMENTED POLYURETHANES
BIOGLASS
POLY(3-HYDROXYBUTYRATE-CO-3-VALERATE)
FILAMENT PREPARATION
ADDITIVE MANUFACTURING
title_short 3D-Printed Poly(ester urethane)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Bioglass Scaffolds for Tissue Engineering Applications
title_full 3D-Printed Poly(ester urethane)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Bioglass Scaffolds for Tissue Engineering Applications
title_fullStr 3D-Printed Poly(ester urethane)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Bioglass Scaffolds for Tissue Engineering Applications
title_full_unstemmed 3D-Printed Poly(ester urethane)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Bioglass Scaffolds for Tissue Engineering Applications
title_sort 3D-Printed Poly(ester urethane)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Bioglass Scaffolds for Tissue Engineering Applications
dc.creator.none.fl_str_mv Lores, Nayla Jimena
Aráoz, Silvina Beatriz
Hung Hung, Yuk Ming Xavier
Talou, Mariano Hernán
Boccaccini, Aldo R.
Abraham, Gustavo Abel
Hermida, Élida B.
Caracciolo, Pablo Christian
author Lores, Nayla Jimena
author_facet Lores, Nayla Jimena
Aráoz, Silvina Beatriz
Hung Hung, Yuk Ming Xavier
Talou, Mariano Hernán
Boccaccini, Aldo R.
Abraham, Gustavo Abel
Hermida, Élida B.
Caracciolo, Pablo Christian
author_role author
author2 Aráoz, Silvina Beatriz
Hung Hung, Yuk Ming Xavier
Talou, Mariano Hernán
Boccaccini, Aldo R.
Abraham, Gustavo Abel
Hermida, Élida B.
Caracciolo, Pablo Christian
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv SEGMENTED POLYURETHANES
BIOGLASS
POLY(3-HYDROXYBUTYRATE-CO-3-VALERATE)
FILAMENT PREPARATION
ADDITIVE MANUFACTURING
topic SEGMENTED POLYURETHANES
BIOGLASS
POLY(3-HYDROXYBUTYRATE-CO-3-VALERATE)
FILAMENT PREPARATION
ADDITIVE MANUFACTURING
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.9
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Biodegradable polymers and bioceramics give rise to composite structures that serve as scaffolds to promote tissue regeneration. The current research explores the preparation of biodegradable filaments for additive manufacturing. Bioresorbable segmented poly(ester urethanes) (SPEUs) are easily printable elastomers but lack bioactivity and present low elastic modulus, making them unsuitable for applications such as bone tissue engineering. Strategies such as blending and composite filament production still constitute an important challenge in addressing SPEU limitations. In this work, SPEUpoly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) blends and SPEU-PHBV-Bioglass 45S5® (BG) composite materials were processed into filaments and 3D structures. A comprehensive characterization of their morphology and thermal and mechanical properties is presented. The production of 3D structures based on SPEU-PHBV with excellent dimensional precision was achieved. Although SPEU-PHBV-BG printed structures showed some defects associated with the printing process, the physicochemical, thermal, and mechanical properties of these materials hold promise. The blend composition, BG content and particle size, processing parameters, and blending techniques were carefully managed to ensure that the mechanical behavior of the material remained under control. The incorporation of PHBV in SPEU-PHBV at 70:30 w/w and BG (5 wt%) acted as reinforcement, enhancing both the elastic modulus of the filaments and the compressive mechanical behavior of the 3D matrices. The compressive stress of the printed scaffold was found to be 1.48 ± 0.13 MPa, which is optimal for tissues such as human proximal tibial trabecular bone. Therefore, these materials show potential for use in the design and manufacture of customized structures for bone tissue engineering.
Fil: Lores, Nayla Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Aráoz, Silvina Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; Argentina
Fil: Hung Hung, Yuk Ming Xavier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Talou, Mariano Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Boccaccini, Aldo R.. Universitat Erlangen Nuremberg; Alemania
Fil: Abraham, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Hermida, Élida B.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnologías Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologías Emergentes y Ciencias Aplicadas; Argentina
Fil: Caracciolo, Pablo Christian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
description Biodegradable polymers and bioceramics give rise to composite structures that serve as scaffolds to promote tissue regeneration. The current research explores the preparation of biodegradable filaments for additive manufacturing. Bioresorbable segmented poly(ester urethanes) (SPEUs) are easily printable elastomers but lack bioactivity and present low elastic modulus, making them unsuitable for applications such as bone tissue engineering. Strategies such as blending and composite filament production still constitute an important challenge in addressing SPEU limitations. In this work, SPEUpoly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) blends and SPEU-PHBV-Bioglass 45S5® (BG) composite materials were processed into filaments and 3D structures. A comprehensive characterization of their morphology and thermal and mechanical properties is presented. The production of 3D structures based on SPEU-PHBV with excellent dimensional precision was achieved. Although SPEU-PHBV-BG printed structures showed some defects associated with the printing process, the physicochemical, thermal, and mechanical properties of these materials hold promise. The blend composition, BG content and particle size, processing parameters, and blending techniques were carefully managed to ensure that the mechanical behavior of the material remained under control. The incorporation of PHBV in SPEU-PHBV at 70:30 w/w and BG (5 wt%) acted as reinforcement, enhancing both the elastic modulus of the filaments and the compressive mechanical behavior of the 3D matrices. The compressive stress of the printed scaffold was found to be 1.48 ± 0.13 MPa, which is optimal for tissues such as human proximal tibial trabecular bone. Therefore, these materials show potential for use in the design and manufacture of customized structures for bone tissue engineering.
publishDate 2024
dc.date.none.fl_str_mv 2024-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/256978
Lores, Nayla Jimena; Aráoz, Silvina Beatriz; Hung Hung, Yuk Ming Xavier; Talou, Mariano Hernán; Boccaccini, Aldo R.; et al.; 3D-Printed Poly(ester urethane)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Bioglass Scaffolds for Tissue Engineering Applications; Multidisciplinary Digital Publishing Institute; Polymers; 16; 23; 11-2024; 1-14
2073-4360
CONICET Digital
CONICET
url http://hdl.handle.net/11336/256978
identifier_str_mv Lores, Nayla Jimena; Aráoz, Silvina Beatriz; Hung Hung, Yuk Ming Xavier; Talou, Mariano Hernán; Boccaccini, Aldo R.; et al.; 3D-Printed Poly(ester urethane)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Bioglass Scaffolds for Tissue Engineering Applications; Multidisciplinary Digital Publishing Institute; Polymers; 16; 23; 11-2024; 1-14
2073-4360
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4360/16/23/3355
info:eu-repo/semantics/altIdentifier/doi/10.3390/polym16233355
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269012383236096
score 13.13397