An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cells

Autores
Spaiardi, Paolo; Tavazzani, Elisa; Manca, Marco; Milesi, Verónica; Russo, Giancarlo; Prigioni, Ivo; Marcotti, Walter; Magistretti, Jacopo; Masetto, Sergio
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Type I and type II hair cells are the sensory receptors of the mammalian vestibular epithelia. Type I hair cells are characterized by their basolateral membrane being enveloped in a single large afferent nerve terminal, named the calyx, and by the expression of a low‐voltage‐activated outward rectifying K+ current, IK,L. The biophysical properties and molecular profile of IK,L are still largely unknown. By using the patch‐clamp whole‐cell technique, we examined the voltage‐ and time‐dependent properties of IK,L in type I hair cells of the mouse semicircular canal. We found that the biophysical properties of IK,L were affected by an unstable K+ equilibrium potential (VeqK+). Both the outward and inward K+ currents shifted VeqK+ consistent with K+ accumulation or depletion, respectively, in the extracellular space, which we attributed to a residual calyx attached to the basolateral membrane of the hair cells. We therefore optimized the hair cell dissociation protocol in order to isolate mature type I hair cells without their calyx. In these cells, the uncontaminated IK,L showed a half‐activation at –79.6 mV and a steep voltage dependence (2.8 mV). IK,L also showed complex activation and deactivation kinetics, which we faithfully reproduced by an allosteric channel gating scheme where the channel is able to open from all (five) closed states. The ‘early’ open states substantially contribute to IK,L activation at negative voltages. This study provides the first complete description of the ‘native’ biophysical properties of IK,L in adult mouse vestibular type I hair cells.
Fil: Spaiardi, Paolo. Università degli Studi di Pavia; Italia
Fil: Tavazzani, Elisa. Università degli Studi di Pavia; Italia
Fil: Manca, Marco. Università degli Studi di Pavia; Italia
Fil: Milesi, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; Argentina
Fil: Russo, Giancarlo. Università degli Studi di Pavia; Italia
Fil: Prigioni, Ivo. Università degli Studi di Pavia; Italia
Fil: Marcotti, Walter. University of Sheffield. Department of Biomedical Science; Reino Unido
Fil: Magistretti, Jacopo. Università degli Studi di Pavia; Italia
Fil: Masetto, Sergio. Università degli Studi di Pavia; Italia
Materia
CHANNEL GATING MODEL
IK,L
TYPE I VESTIBULAR HAIR CELL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/48729

id CONICETDig_7b8b913e0af3e3e73558255097036df7
oai_identifier_str oai:ri.conicet.gov.ar:11336/48729
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cellsSpaiardi, PaoloTavazzani, ElisaManca, MarcoMilesi, VerónicaRusso, GiancarloPrigioni, IvoMarcotti, WalterMagistretti, JacopoMasetto, SergioCHANNEL GATING MODELIK,LTYPE I VESTIBULAR HAIR CELLhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Type I and type II hair cells are the sensory receptors of the mammalian vestibular epithelia. Type I hair cells are characterized by their basolateral membrane being enveloped in a single large afferent nerve terminal, named the calyx, and by the expression of a low‐voltage‐activated outward rectifying K+ current, IK,L. The biophysical properties and molecular profile of IK,L are still largely unknown. By using the patch‐clamp whole‐cell technique, we examined the voltage‐ and time‐dependent properties of IK,L in type I hair cells of the mouse semicircular canal. We found that the biophysical properties of IK,L were affected by an unstable K+ equilibrium potential (VeqK+). Both the outward and inward K+ currents shifted VeqK+ consistent with K+ accumulation or depletion, respectively, in the extracellular space, which we attributed to a residual calyx attached to the basolateral membrane of the hair cells. We therefore optimized the hair cell dissociation protocol in order to isolate mature type I hair cells without their calyx. In these cells, the uncontaminated IK,L showed a half‐activation at –79.6 mV and a steep voltage dependence (2.8 mV). IK,L also showed complex activation and deactivation kinetics, which we faithfully reproduced by an allosteric channel gating scheme where the channel is able to open from all (five) closed states. The ‘early’ open states substantially contribute to IK,L activation at negative voltages. This study provides the first complete description of the ‘native’ biophysical properties of IK,L in adult mouse vestibular type I hair cells.Fil: Spaiardi, Paolo. Università degli Studi di Pavia; ItaliaFil: Tavazzani, Elisa. Università degli Studi di Pavia; ItaliaFil: Manca, Marco. Università degli Studi di Pavia; ItaliaFil: Milesi, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; ArgentinaFil: Russo, Giancarlo. Università degli Studi di Pavia; ItaliaFil: Prigioni, Ivo. Università degli Studi di Pavia; ItaliaFil: Marcotti, Walter. University of Sheffield. Department of Biomedical Science; Reino UnidoFil: Magistretti, Jacopo. Università degli Studi di Pavia; ItaliaFil: Masetto, Sergio. Università degli Studi di Pavia; ItaliaWiley Blackwell Publishing, Inc2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48729Spaiardi, Paolo; Tavazzani, Elisa; Manca, Marco; Milesi, Verónica; Russo, Giancarlo; et al.; An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cells; Wiley Blackwell Publishing, Inc; The Journal Of Physiology; 595; 21; 11-2017; 6735-67500022-3751CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/JP274202info:eu-repo/semantics/altIdentifier/doi/10.1113/JP274202info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:03Zoai:ri.conicet.gov.ar:11336/48729instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:03.887CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cells
title An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cells
spellingShingle An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cells
Spaiardi, Paolo
CHANNEL GATING MODEL
IK,L
TYPE I VESTIBULAR HAIR CELL
title_short An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cells
title_full An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cells
title_fullStr An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cells
title_full_unstemmed An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cells
title_sort An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cells
dc.creator.none.fl_str_mv Spaiardi, Paolo
Tavazzani, Elisa
Manca, Marco
Milesi, Verónica
Russo, Giancarlo
Prigioni, Ivo
Marcotti, Walter
Magistretti, Jacopo
Masetto, Sergio
author Spaiardi, Paolo
author_facet Spaiardi, Paolo
Tavazzani, Elisa
Manca, Marco
Milesi, Verónica
Russo, Giancarlo
Prigioni, Ivo
Marcotti, Walter
Magistretti, Jacopo
Masetto, Sergio
author_role author
author2 Tavazzani, Elisa
Manca, Marco
Milesi, Verónica
Russo, Giancarlo
Prigioni, Ivo
Marcotti, Walter
Magistretti, Jacopo
Masetto, Sergio
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CHANNEL GATING MODEL
IK,L
TYPE I VESTIBULAR HAIR CELL
topic CHANNEL GATING MODEL
IK,L
TYPE I VESTIBULAR HAIR CELL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Type I and type II hair cells are the sensory receptors of the mammalian vestibular epithelia. Type I hair cells are characterized by their basolateral membrane being enveloped in a single large afferent nerve terminal, named the calyx, and by the expression of a low‐voltage‐activated outward rectifying K+ current, IK,L. The biophysical properties and molecular profile of IK,L are still largely unknown. By using the patch‐clamp whole‐cell technique, we examined the voltage‐ and time‐dependent properties of IK,L in type I hair cells of the mouse semicircular canal. We found that the biophysical properties of IK,L were affected by an unstable K+ equilibrium potential (VeqK+). Both the outward and inward K+ currents shifted VeqK+ consistent with K+ accumulation or depletion, respectively, in the extracellular space, which we attributed to a residual calyx attached to the basolateral membrane of the hair cells. We therefore optimized the hair cell dissociation protocol in order to isolate mature type I hair cells without their calyx. In these cells, the uncontaminated IK,L showed a half‐activation at –79.6 mV and a steep voltage dependence (2.8 mV). IK,L also showed complex activation and deactivation kinetics, which we faithfully reproduced by an allosteric channel gating scheme where the channel is able to open from all (five) closed states. The ‘early’ open states substantially contribute to IK,L activation at negative voltages. This study provides the first complete description of the ‘native’ biophysical properties of IK,L in adult mouse vestibular type I hair cells.
Fil: Spaiardi, Paolo. Università degli Studi di Pavia; Italia
Fil: Tavazzani, Elisa. Università degli Studi di Pavia; Italia
Fil: Manca, Marco. Università degli Studi di Pavia; Italia
Fil: Milesi, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; Argentina
Fil: Russo, Giancarlo. Università degli Studi di Pavia; Italia
Fil: Prigioni, Ivo. Università degli Studi di Pavia; Italia
Fil: Marcotti, Walter. University of Sheffield. Department of Biomedical Science; Reino Unido
Fil: Magistretti, Jacopo. Università degli Studi di Pavia; Italia
Fil: Masetto, Sergio. Università degli Studi di Pavia; Italia
description Type I and type II hair cells are the sensory receptors of the mammalian vestibular epithelia. Type I hair cells are characterized by their basolateral membrane being enveloped in a single large afferent nerve terminal, named the calyx, and by the expression of a low‐voltage‐activated outward rectifying K+ current, IK,L. The biophysical properties and molecular profile of IK,L are still largely unknown. By using the patch‐clamp whole‐cell technique, we examined the voltage‐ and time‐dependent properties of IK,L in type I hair cells of the mouse semicircular canal. We found that the biophysical properties of IK,L were affected by an unstable K+ equilibrium potential (VeqK+). Both the outward and inward K+ currents shifted VeqK+ consistent with K+ accumulation or depletion, respectively, in the extracellular space, which we attributed to a residual calyx attached to the basolateral membrane of the hair cells. We therefore optimized the hair cell dissociation protocol in order to isolate mature type I hair cells without their calyx. In these cells, the uncontaminated IK,L showed a half‐activation at –79.6 mV and a steep voltage dependence (2.8 mV). IK,L also showed complex activation and deactivation kinetics, which we faithfully reproduced by an allosteric channel gating scheme where the channel is able to open from all (five) closed states. The ‘early’ open states substantially contribute to IK,L activation at negative voltages. This study provides the first complete description of the ‘native’ biophysical properties of IK,L in adult mouse vestibular type I hair cells.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/48729
Spaiardi, Paolo; Tavazzani, Elisa; Manca, Marco; Milesi, Verónica; Russo, Giancarlo; et al.; An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cells; Wiley Blackwell Publishing, Inc; The Journal Of Physiology; 595; 21; 11-2017; 6735-6750
0022-3751
CONICET Digital
CONICET
url http://hdl.handle.net/11336/48729
identifier_str_mv Spaiardi, Paolo; Tavazzani, Elisa; Manca, Marco; Milesi, Verónica; Russo, Giancarlo; et al.; An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cells; Wiley Blackwell Publishing, Inc; The Journal Of Physiology; 595; 21; 11-2017; 6735-6750
0022-3751
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/JP274202
info:eu-repo/semantics/altIdentifier/doi/10.1113/JP274202
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613841686626304
score 13.070432