Sampling scheme optimization to map soil depth to petrocalcic horizon at field scale
- Autores
- Domenech, Marisa Beatriz; Castro Franco, Mauricio; Costa, Jose Luis; Amiotti, Nilda Mabel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Soil depth has played a key role in the development of soil survey, implementation of soil-specific management and validation of hydrological models. Generally, soil depth at field scale is difficult to map due to complex interactions of factors of soil formation at field scale. As a result, the conventional sampling schemes to map soil depth are generally laborious, time consuming and expensive. In this study, we presented, tested and evaluated a method to optimize the sampling scheme to map soil depth to petrocalcic horizon at field scale. The method was tested with real data at four agricultural fields localized in the southeast Pampas plain of Argentina. The purpose of the method was to minimize the sample dataset size to map soil depth to petrocalcic horizon based on ordinary cokriging, five calibration sample sizes (returned by Conditioned Latin hypercube –cLHS-), and apparent electrical conductivity (ECa) or elevation as variables of auxiliary information. The results suggest that (i) only 30% of samples collected on a 30-m grid are required to provide high prediction accuracy (R2 > 0.95) to map soil depth to petrocalcic horizon; (ii) an independent validation dataset based on 50% of the samples on a 30-m grid is adequate to validate the most realistic accuracy estimate; and (iii) ECa and elevation, as variables of auxiliary information, are sufficient to map soil depth to petrocalcic horizon. The method proposed provides a significant improvement over conventional to map soil depth and allows reducing cost, time and field labour. Extrapolation of the results to other areas needs to be tested.
Fil: Domenech, Marisa Beatriz. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Barrow; Argentina
Fil: Castro Franco, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Costa, Jose Luis. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Amiotti, Nilda Mabel. Universidad Nacional del Sur. Departamento de Agronomía; Argentina - Materia
-
Argentina
Conditioned Latin Hypercube
Digital Soil Mapping
Ordinary Cokriging
Precision Agriculture - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/72845
Ver los metadatos del registro completo
id |
CONICETDig_7b84b812521a3e65779c00dd0c3a4d54 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/72845 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sampling scheme optimization to map soil depth to petrocalcic horizon at field scaleDomenech, Marisa BeatrizCastro Franco, MauricioCosta, Jose LuisAmiotti, Nilda MabelArgentinaConditioned Latin HypercubeDigital Soil MappingOrdinary CokrigingPrecision Agriculturehttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Soil depth has played a key role in the development of soil survey, implementation of soil-specific management and validation of hydrological models. Generally, soil depth at field scale is difficult to map due to complex interactions of factors of soil formation at field scale. As a result, the conventional sampling schemes to map soil depth are generally laborious, time consuming and expensive. In this study, we presented, tested and evaluated a method to optimize the sampling scheme to map soil depth to petrocalcic horizon at field scale. The method was tested with real data at four agricultural fields localized in the southeast Pampas plain of Argentina. The purpose of the method was to minimize the sample dataset size to map soil depth to petrocalcic horizon based on ordinary cokriging, five calibration sample sizes (returned by Conditioned Latin hypercube –cLHS-), and apparent electrical conductivity (ECa) or elevation as variables of auxiliary information. The results suggest that (i) only 30% of samples collected on a 30-m grid are required to provide high prediction accuracy (R2 > 0.95) to map soil depth to petrocalcic horizon; (ii) an independent validation dataset based on 50% of the samples on a 30-m grid is adequate to validate the most realistic accuracy estimate; and (iii) ECa and elevation, as variables of auxiliary information, are sufficient to map soil depth to petrocalcic horizon. The method proposed provides a significant improvement over conventional to map soil depth and allows reducing cost, time and field labour. Extrapolation of the results to other areas needs to be tested.Fil: Domenech, Marisa Beatriz. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Barrow; ArgentinaFil: Castro Franco, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Costa, Jose Luis. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Amiotti, Nilda Mabel. Universidad Nacional del Sur. Departamento de Agronomía; ArgentinaElsevier Science2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72845Domenech, Marisa Beatriz; Castro Franco, Mauricio; Costa, Jose Luis; Amiotti, Nilda Mabel; Sampling scheme optimization to map soil depth to petrocalcic horizon at field scale; Elsevier Science; Geoderma; 290; 3-2017; 75-820016-7061CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.geoderma.2016.12.012info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0016706116310096info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:04Zoai:ri.conicet.gov.ar:11336/72845instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:04.372CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sampling scheme optimization to map soil depth to petrocalcic horizon at field scale |
title |
Sampling scheme optimization to map soil depth to petrocalcic horizon at field scale |
spellingShingle |
Sampling scheme optimization to map soil depth to petrocalcic horizon at field scale Domenech, Marisa Beatriz Argentina Conditioned Latin Hypercube Digital Soil Mapping Ordinary Cokriging Precision Agriculture |
title_short |
Sampling scheme optimization to map soil depth to petrocalcic horizon at field scale |
title_full |
Sampling scheme optimization to map soil depth to petrocalcic horizon at field scale |
title_fullStr |
Sampling scheme optimization to map soil depth to petrocalcic horizon at field scale |
title_full_unstemmed |
Sampling scheme optimization to map soil depth to petrocalcic horizon at field scale |
title_sort |
Sampling scheme optimization to map soil depth to petrocalcic horizon at field scale |
dc.creator.none.fl_str_mv |
Domenech, Marisa Beatriz Castro Franco, Mauricio Costa, Jose Luis Amiotti, Nilda Mabel |
author |
Domenech, Marisa Beatriz |
author_facet |
Domenech, Marisa Beatriz Castro Franco, Mauricio Costa, Jose Luis Amiotti, Nilda Mabel |
author_role |
author |
author2 |
Castro Franco, Mauricio Costa, Jose Luis Amiotti, Nilda Mabel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Argentina Conditioned Latin Hypercube Digital Soil Mapping Ordinary Cokriging Precision Agriculture |
topic |
Argentina Conditioned Latin Hypercube Digital Soil Mapping Ordinary Cokriging Precision Agriculture |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
dc.description.none.fl_txt_mv |
Soil depth has played a key role in the development of soil survey, implementation of soil-specific management and validation of hydrological models. Generally, soil depth at field scale is difficult to map due to complex interactions of factors of soil formation at field scale. As a result, the conventional sampling schemes to map soil depth are generally laborious, time consuming and expensive. In this study, we presented, tested and evaluated a method to optimize the sampling scheme to map soil depth to petrocalcic horizon at field scale. The method was tested with real data at four agricultural fields localized in the southeast Pampas plain of Argentina. The purpose of the method was to minimize the sample dataset size to map soil depth to petrocalcic horizon based on ordinary cokriging, five calibration sample sizes (returned by Conditioned Latin hypercube –cLHS-), and apparent electrical conductivity (ECa) or elevation as variables of auxiliary information. The results suggest that (i) only 30% of samples collected on a 30-m grid are required to provide high prediction accuracy (R2 > 0.95) to map soil depth to petrocalcic horizon; (ii) an independent validation dataset based on 50% of the samples on a 30-m grid is adequate to validate the most realistic accuracy estimate; and (iii) ECa and elevation, as variables of auxiliary information, are sufficient to map soil depth to petrocalcic horizon. The method proposed provides a significant improvement over conventional to map soil depth and allows reducing cost, time and field labour. Extrapolation of the results to other areas needs to be tested. Fil: Domenech, Marisa Beatriz. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Barrow; Argentina Fil: Castro Franco, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Costa, Jose Luis. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Amiotti, Nilda Mabel. Universidad Nacional del Sur. Departamento de Agronomía; Argentina |
description |
Soil depth has played a key role in the development of soil survey, implementation of soil-specific management and validation of hydrological models. Generally, soil depth at field scale is difficult to map due to complex interactions of factors of soil formation at field scale. As a result, the conventional sampling schemes to map soil depth are generally laborious, time consuming and expensive. In this study, we presented, tested and evaluated a method to optimize the sampling scheme to map soil depth to petrocalcic horizon at field scale. The method was tested with real data at four agricultural fields localized in the southeast Pampas plain of Argentina. The purpose of the method was to minimize the sample dataset size to map soil depth to petrocalcic horizon based on ordinary cokriging, five calibration sample sizes (returned by Conditioned Latin hypercube –cLHS-), and apparent electrical conductivity (ECa) or elevation as variables of auxiliary information. The results suggest that (i) only 30% of samples collected on a 30-m grid are required to provide high prediction accuracy (R2 > 0.95) to map soil depth to petrocalcic horizon; (ii) an independent validation dataset based on 50% of the samples on a 30-m grid is adequate to validate the most realistic accuracy estimate; and (iii) ECa and elevation, as variables of auxiliary information, are sufficient to map soil depth to petrocalcic horizon. The method proposed provides a significant improvement over conventional to map soil depth and allows reducing cost, time and field labour. Extrapolation of the results to other areas needs to be tested. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/72845 Domenech, Marisa Beatriz; Castro Franco, Mauricio; Costa, Jose Luis; Amiotti, Nilda Mabel; Sampling scheme optimization to map soil depth to petrocalcic horizon at field scale; Elsevier Science; Geoderma; 290; 3-2017; 75-82 0016-7061 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/72845 |
identifier_str_mv |
Domenech, Marisa Beatriz; Castro Franco, Mauricio; Costa, Jose Luis; Amiotti, Nilda Mabel; Sampling scheme optimization to map soil depth to petrocalcic horizon at field scale; Elsevier Science; Geoderma; 290; 3-2017; 75-82 0016-7061 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geoderma.2016.12.012 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0016706116310096 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613325653016576 |
score |
13.070432 |