Thermodynamic model for biomass processing in pressure intensified technologies

Autores
Gonzalez Prieto, Mariana; Sánchez, Francisco Adrián; Pereda, Selva
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Pressure intensified technologies have a great potential in the context of biomass refining. A thermodynamic model able to predict phase behavior oftypical mixtures found in biomass processing technologies, containing for instance hydrocarbons, organo-oxygenated compounds and water, is required for the development of a biorefinery process simulator. Moreover, the design of particular fuel/biofuel blends also requires the support of a thermodynamic model to predict the properties of the final products. These types of mixtures are highly non-ideal due to the presence of association and solvation effects. It has already been proved that the Group Contribution with Association Equation of State (GCA-EoS) is able to predict the complex phase behavior of mixtures containing natural products and biofuels. In the last few years, several contributions agree that 2,5-dimethylfuran has a great potential as a sugar-derived fuel additive. In this work, as a case study, we extend the GCA-EoS to represent the phase equilibria of furan derivatives with hydrocarbons and alcohols. In addition, we show that the GCA-EoS is able to predict, based on the performed parameterization, high pressure data of 2,5-hydroxymethylfurfural solubility in CO2 and ethanol as co-solvent.
Fil: Gonzalez Prieto, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Sánchez, Francisco Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Pereda, Selva. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Materia
Biorefinery
Thermodynamic
Pressure Intensified Processes
Biomass Upgrade
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23463

id CONICETDig_7aeb2647f711ba05c72d9a4c729fb8c1
oai_identifier_str oai:ri.conicet.gov.ar:11336/23463
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Thermodynamic model for biomass processing in pressure intensified technologiesGonzalez Prieto, MarianaSánchez, Francisco AdriánPereda, SelvaBiorefineryThermodynamicPressure Intensified ProcessesBiomass Upgradehttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Pressure intensified technologies have a great potential in the context of biomass refining. A thermodynamic model able to predict phase behavior oftypical mixtures found in biomass processing technologies, containing for instance hydrocarbons, organo-oxygenated compounds and water, is required for the development of a biorefinery process simulator. Moreover, the design of particular fuel/biofuel blends also requires the support of a thermodynamic model to predict the properties of the final products. These types of mixtures are highly non-ideal due to the presence of association and solvation effects. It has already been proved that the Group Contribution with Association Equation of State (GCA-EoS) is able to predict the complex phase behavior of mixtures containing natural products and biofuels. In the last few years, several contributions agree that 2,5-dimethylfuran has a great potential as a sugar-derived fuel additive. In this work, as a case study, we extend the GCA-EoS to represent the phase equilibria of furan derivatives with hydrocarbons and alcohols. In addition, we show that the GCA-EoS is able to predict, based on the performed parameterization, high pressure data of 2,5-hydroxymethylfurfural solubility in CO2 and ethanol as co-solvent.Fil: Gonzalez Prieto, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Sánchez, Francisco Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Pereda, Selva. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaElsevier Science2014-09-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23463Gonzalez Prieto, Mariana; Sánchez, Francisco Adrián; Pereda, Selva; Thermodynamic model for biomass processing in pressure intensified technologies; Elsevier Science; Journal of Supercritical Fluids; 96; 4-9-2014; 53-670896-8446CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0896844614002678info:eu-repo/semantics/altIdentifier/doi/10.1016/j.supflu.2014.08.024info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:42Zoai:ri.conicet.gov.ar:11336/23463instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:42.475CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Thermodynamic model for biomass processing in pressure intensified technologies
title Thermodynamic model for biomass processing in pressure intensified technologies
spellingShingle Thermodynamic model for biomass processing in pressure intensified technologies
Gonzalez Prieto, Mariana
Biorefinery
Thermodynamic
Pressure Intensified Processes
Biomass Upgrade
title_short Thermodynamic model for biomass processing in pressure intensified technologies
title_full Thermodynamic model for biomass processing in pressure intensified technologies
title_fullStr Thermodynamic model for biomass processing in pressure intensified technologies
title_full_unstemmed Thermodynamic model for biomass processing in pressure intensified technologies
title_sort Thermodynamic model for biomass processing in pressure intensified technologies
dc.creator.none.fl_str_mv Gonzalez Prieto, Mariana
Sánchez, Francisco Adrián
Pereda, Selva
author Gonzalez Prieto, Mariana
author_facet Gonzalez Prieto, Mariana
Sánchez, Francisco Adrián
Pereda, Selva
author_role author
author2 Sánchez, Francisco Adrián
Pereda, Selva
author2_role author
author
dc.subject.none.fl_str_mv Biorefinery
Thermodynamic
Pressure Intensified Processes
Biomass Upgrade
topic Biorefinery
Thermodynamic
Pressure Intensified Processes
Biomass Upgrade
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Pressure intensified technologies have a great potential in the context of biomass refining. A thermodynamic model able to predict phase behavior oftypical mixtures found in biomass processing technologies, containing for instance hydrocarbons, organo-oxygenated compounds and water, is required for the development of a biorefinery process simulator. Moreover, the design of particular fuel/biofuel blends also requires the support of a thermodynamic model to predict the properties of the final products. These types of mixtures are highly non-ideal due to the presence of association and solvation effects. It has already been proved that the Group Contribution with Association Equation of State (GCA-EoS) is able to predict the complex phase behavior of mixtures containing natural products and biofuels. In the last few years, several contributions agree that 2,5-dimethylfuran has a great potential as a sugar-derived fuel additive. In this work, as a case study, we extend the GCA-EoS to represent the phase equilibria of furan derivatives with hydrocarbons and alcohols. In addition, we show that the GCA-EoS is able to predict, based on the performed parameterization, high pressure data of 2,5-hydroxymethylfurfural solubility in CO2 and ethanol as co-solvent.
Fil: Gonzalez Prieto, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Sánchez, Francisco Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Pereda, Selva. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
description Pressure intensified technologies have a great potential in the context of biomass refining. A thermodynamic model able to predict phase behavior oftypical mixtures found in biomass processing technologies, containing for instance hydrocarbons, organo-oxygenated compounds and water, is required for the development of a biorefinery process simulator. Moreover, the design of particular fuel/biofuel blends also requires the support of a thermodynamic model to predict the properties of the final products. These types of mixtures are highly non-ideal due to the presence of association and solvation effects. It has already been proved that the Group Contribution with Association Equation of State (GCA-EoS) is able to predict the complex phase behavior of mixtures containing natural products and biofuels. In the last few years, several contributions agree that 2,5-dimethylfuran has a great potential as a sugar-derived fuel additive. In this work, as a case study, we extend the GCA-EoS to represent the phase equilibria of furan derivatives with hydrocarbons and alcohols. In addition, we show that the GCA-EoS is able to predict, based on the performed parameterization, high pressure data of 2,5-hydroxymethylfurfural solubility in CO2 and ethanol as co-solvent.
publishDate 2014
dc.date.none.fl_str_mv 2014-09-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23463
Gonzalez Prieto, Mariana; Sánchez, Francisco Adrián; Pereda, Selva; Thermodynamic model for biomass processing in pressure intensified technologies; Elsevier Science; Journal of Supercritical Fluids; 96; 4-9-2014; 53-67
0896-8446
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23463
identifier_str_mv Gonzalez Prieto, Mariana; Sánchez, Francisco Adrián; Pereda, Selva; Thermodynamic model for biomass processing in pressure intensified technologies; Elsevier Science; Journal of Supercritical Fluids; 96; 4-9-2014; 53-67
0896-8446
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0896844614002678
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.supflu.2014.08.024
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613562430914560
score 13.070432