Thermodynamic model for biomass processing in pressure intensified technologies
- Autores
- Gonzalez Prieto, Mariana; Sánchez, Francisco Adrián; Pereda, Selva
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Pressure intensified technologies have a great potential in the context of biomass refining. A thermodynamic model able to predict phase behavior oftypical mixtures found in biomass processing technologies, containing for instance hydrocarbons, organo-oxygenated compounds and water, is required for the development of a biorefinery process simulator. Moreover, the design of particular fuel/biofuel blends also requires the support of a thermodynamic model to predict the properties of the final products. These types of mixtures are highly non-ideal due to the presence of association and solvation effects. It has already been proved that the Group Contribution with Association Equation of State (GCA-EoS) is able to predict the complex phase behavior of mixtures containing natural products and biofuels. In the last few years, several contributions agree that 2,5-dimethylfuran has a great potential as a sugar-derived fuel additive. In this work, as a case study, we extend the GCA-EoS to represent the phase equilibria of furan derivatives with hydrocarbons and alcohols. In addition, we show that the GCA-EoS is able to predict, based on the performed parameterization, high pressure data of 2,5-hydroxymethylfurfural solubility in CO2 and ethanol as co-solvent.
Fil: Gonzalez Prieto, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Sánchez, Francisco Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Pereda, Selva. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina - Materia
-
Biorefinery
Thermodynamic
Pressure Intensified Processes
Biomass Upgrade - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/23463
Ver los metadatos del registro completo
id |
CONICETDig_7aeb2647f711ba05c72d9a4c729fb8c1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/23463 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Thermodynamic model for biomass processing in pressure intensified technologiesGonzalez Prieto, MarianaSánchez, Francisco AdriánPereda, SelvaBiorefineryThermodynamicPressure Intensified ProcessesBiomass Upgradehttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Pressure intensified technologies have a great potential in the context of biomass refining. A thermodynamic model able to predict phase behavior oftypical mixtures found in biomass processing technologies, containing for instance hydrocarbons, organo-oxygenated compounds and water, is required for the development of a biorefinery process simulator. Moreover, the design of particular fuel/biofuel blends also requires the support of a thermodynamic model to predict the properties of the final products. These types of mixtures are highly non-ideal due to the presence of association and solvation effects. It has already been proved that the Group Contribution with Association Equation of State (GCA-EoS) is able to predict the complex phase behavior of mixtures containing natural products and biofuels. In the last few years, several contributions agree that 2,5-dimethylfuran has a great potential as a sugar-derived fuel additive. In this work, as a case study, we extend the GCA-EoS to represent the phase equilibria of furan derivatives with hydrocarbons and alcohols. In addition, we show that the GCA-EoS is able to predict, based on the performed parameterization, high pressure data of 2,5-hydroxymethylfurfural solubility in CO2 and ethanol as co-solvent.Fil: Gonzalez Prieto, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Sánchez, Francisco Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Pereda, Selva. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaElsevier Science2014-09-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23463Gonzalez Prieto, Mariana; Sánchez, Francisco Adrián; Pereda, Selva; Thermodynamic model for biomass processing in pressure intensified technologies; Elsevier Science; Journal of Supercritical Fluids; 96; 4-9-2014; 53-670896-8446CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0896844614002678info:eu-repo/semantics/altIdentifier/doi/10.1016/j.supflu.2014.08.024info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:42Zoai:ri.conicet.gov.ar:11336/23463instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:42.475CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Thermodynamic model for biomass processing in pressure intensified technologies |
title |
Thermodynamic model for biomass processing in pressure intensified technologies |
spellingShingle |
Thermodynamic model for biomass processing in pressure intensified technologies Gonzalez Prieto, Mariana Biorefinery Thermodynamic Pressure Intensified Processes Biomass Upgrade |
title_short |
Thermodynamic model for biomass processing in pressure intensified technologies |
title_full |
Thermodynamic model for biomass processing in pressure intensified technologies |
title_fullStr |
Thermodynamic model for biomass processing in pressure intensified technologies |
title_full_unstemmed |
Thermodynamic model for biomass processing in pressure intensified technologies |
title_sort |
Thermodynamic model for biomass processing in pressure intensified technologies |
dc.creator.none.fl_str_mv |
Gonzalez Prieto, Mariana Sánchez, Francisco Adrián Pereda, Selva |
author |
Gonzalez Prieto, Mariana |
author_facet |
Gonzalez Prieto, Mariana Sánchez, Francisco Adrián Pereda, Selva |
author_role |
author |
author2 |
Sánchez, Francisco Adrián Pereda, Selva |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Biorefinery Thermodynamic Pressure Intensified Processes Biomass Upgrade |
topic |
Biorefinery Thermodynamic Pressure Intensified Processes Biomass Upgrade |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Pressure intensified technologies have a great potential in the context of biomass refining. A thermodynamic model able to predict phase behavior oftypical mixtures found in biomass processing technologies, containing for instance hydrocarbons, organo-oxygenated compounds and water, is required for the development of a biorefinery process simulator. Moreover, the design of particular fuel/biofuel blends also requires the support of a thermodynamic model to predict the properties of the final products. These types of mixtures are highly non-ideal due to the presence of association and solvation effects. It has already been proved that the Group Contribution with Association Equation of State (GCA-EoS) is able to predict the complex phase behavior of mixtures containing natural products and biofuels. In the last few years, several contributions agree that 2,5-dimethylfuran has a great potential as a sugar-derived fuel additive. In this work, as a case study, we extend the GCA-EoS to represent the phase equilibria of furan derivatives with hydrocarbons and alcohols. In addition, we show that the GCA-EoS is able to predict, based on the performed parameterization, high pressure data of 2,5-hydroxymethylfurfural solubility in CO2 and ethanol as co-solvent. Fil: Gonzalez Prieto, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Sánchez, Francisco Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Pereda, Selva. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina |
description |
Pressure intensified technologies have a great potential in the context of biomass refining. A thermodynamic model able to predict phase behavior oftypical mixtures found in biomass processing technologies, containing for instance hydrocarbons, organo-oxygenated compounds and water, is required for the development of a biorefinery process simulator. Moreover, the design of particular fuel/biofuel blends also requires the support of a thermodynamic model to predict the properties of the final products. These types of mixtures are highly non-ideal due to the presence of association and solvation effects. It has already been proved that the Group Contribution with Association Equation of State (GCA-EoS) is able to predict the complex phase behavior of mixtures containing natural products and biofuels. In the last few years, several contributions agree that 2,5-dimethylfuran has a great potential as a sugar-derived fuel additive. In this work, as a case study, we extend the GCA-EoS to represent the phase equilibria of furan derivatives with hydrocarbons and alcohols. In addition, we show that the GCA-EoS is able to predict, based on the performed parameterization, high pressure data of 2,5-hydroxymethylfurfural solubility in CO2 and ethanol as co-solvent. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/23463 Gonzalez Prieto, Mariana; Sánchez, Francisco Adrián; Pereda, Selva; Thermodynamic model for biomass processing in pressure intensified technologies; Elsevier Science; Journal of Supercritical Fluids; 96; 4-9-2014; 53-67 0896-8446 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/23463 |
identifier_str_mv |
Gonzalez Prieto, Mariana; Sánchez, Francisco Adrián; Pereda, Selva; Thermodynamic model for biomass processing in pressure intensified technologies; Elsevier Science; Journal of Supercritical Fluids; 96; 4-9-2014; 53-67 0896-8446 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0896844614002678 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.supflu.2014.08.024 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613562430914560 |
score |
13.070432 |