3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy
- Autores
- Kim, Jisoo; Bürger, Johannes; Jang, Bumjoon; Zeisberger, Matthias; Gargiulo, Julian; de Menezes, Leonardo S.; Maier, Stefan A.; Schmidt, Markus A.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Here, we unlock the properties of the recently introduced on-chip hollow-core microgap waveguide in the context of optofluidics which allows for intense light-water interaction over long lengths with fast response times. The nanoprinted waveguide operates by the antiresonance effect in the visible and near-infrared domain and includes a hollow core with defined gaps every 176 µm. The spectroscopic capabilities are demonstrated by various absorption-related experiments, showing that the Beer-Lambert law can be applied without any modification. In addition to revealing key performance parameters, time-resolved experiments showed a decisive improvement in diffusion times resulting from the lateral access provided by the microgaps. Overall, the microgap waveguide represents a pathway for on-chip spectroscopy in aqueous environments.
Fil: Kim, Jisoo. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; Alemania
Fil: Bürger, Johannes. Ludwig Maximilians Universitat; Alemania
Fil: Jang, Bumjoon. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; Alemania
Fil: Zeisberger, Matthias. Universitat Jena; Alemania
Fil: Gargiulo, Julian. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Menezes, Leonardo S.. Ludwig Maximilians Universitat; Alemania. Universidade Federal de Pernambuco; Brasil
Fil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania. Imperial College London; Reino Unido. Monash University; Australia
Fil: Schmidt, Markus A.. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; Alemania - Materia
-
3D-nanoprinted
Antiresonant waveguide
Lab on a chip
Optofluidic spectroscopy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/219045
Ver los metadatos del registro completo
id |
CONICETDig_79fedbdfe2d72873f3d18718a9fb8c90 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/219045 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopyKim, JisooBürger, JohannesJang, BumjoonZeisberger, MatthiasGargiulo, Juliande Menezes, Leonardo S.Maier, Stefan A.Schmidt, Markus A.3D-nanoprintedAntiresonant waveguideLab on a chipOptofluidic spectroscopyhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Here, we unlock the properties of the recently introduced on-chip hollow-core microgap waveguide in the context of optofluidics which allows for intense light-water interaction over long lengths with fast response times. The nanoprinted waveguide operates by the antiresonance effect in the visible and near-infrared domain and includes a hollow core with defined gaps every 176 µm. The spectroscopic capabilities are demonstrated by various absorption-related experiments, showing that the Beer-Lambert law can be applied without any modification. In addition to revealing key performance parameters, time-resolved experiments showed a decisive improvement in diffusion times resulting from the lateral access provided by the microgaps. Overall, the microgap waveguide represents a pathway for on-chip spectroscopy in aqueous environments.Fil: Kim, Jisoo. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; AlemaniaFil: Bürger, Johannes. Ludwig Maximilians Universitat; AlemaniaFil: Jang, Bumjoon. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; AlemaniaFil: Zeisberger, Matthias. Universitat Jena; AlemaniaFil: Gargiulo, Julian. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: de Menezes, Leonardo S.. Ludwig Maximilians Universitat; Alemania. Universidade Federal de Pernambuco; BrasilFil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania. Imperial College London; Reino Unido. Monash University; AustraliaFil: Schmidt, Markus A.. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; AlemaniaOptical Society of America2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219045Kim, Jisoo; Bürger, Johannes; Jang, Bumjoon; Zeisberger, Matthias; Gargiulo, Julian; et al.; 3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy; Optical Society of America; Optics Express; 31; 2; 1-2023; 2833-28451094-4087CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/oe/fulltext.cfm?uri=oe-31-2-2833&id=525084info:eu-repo/semantics/altIdentifier/doi/10.1364/OE.475794info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:11Zoai:ri.conicet.gov.ar:11336/219045instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:11.901CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy |
title |
3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy |
spellingShingle |
3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy Kim, Jisoo 3D-nanoprinted Antiresonant waveguide Lab on a chip Optofluidic spectroscopy |
title_short |
3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy |
title_full |
3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy |
title_fullStr |
3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy |
title_full_unstemmed |
3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy |
title_sort |
3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy |
dc.creator.none.fl_str_mv |
Kim, Jisoo Bürger, Johannes Jang, Bumjoon Zeisberger, Matthias Gargiulo, Julian de Menezes, Leonardo S. Maier, Stefan A. Schmidt, Markus A. |
author |
Kim, Jisoo |
author_facet |
Kim, Jisoo Bürger, Johannes Jang, Bumjoon Zeisberger, Matthias Gargiulo, Julian de Menezes, Leonardo S. Maier, Stefan A. Schmidt, Markus A. |
author_role |
author |
author2 |
Bürger, Johannes Jang, Bumjoon Zeisberger, Matthias Gargiulo, Julian de Menezes, Leonardo S. Maier, Stefan A. Schmidt, Markus A. |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
3D-nanoprinted Antiresonant waveguide Lab on a chip Optofluidic spectroscopy |
topic |
3D-nanoprinted Antiresonant waveguide Lab on a chip Optofluidic spectroscopy |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Here, we unlock the properties of the recently introduced on-chip hollow-core microgap waveguide in the context of optofluidics which allows for intense light-water interaction over long lengths with fast response times. The nanoprinted waveguide operates by the antiresonance effect in the visible and near-infrared domain and includes a hollow core with defined gaps every 176 µm. The spectroscopic capabilities are demonstrated by various absorption-related experiments, showing that the Beer-Lambert law can be applied without any modification. In addition to revealing key performance parameters, time-resolved experiments showed a decisive improvement in diffusion times resulting from the lateral access provided by the microgaps. Overall, the microgap waveguide represents a pathway for on-chip spectroscopy in aqueous environments. Fil: Kim, Jisoo. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; Alemania Fil: Bürger, Johannes. Ludwig Maximilians Universitat; Alemania Fil: Jang, Bumjoon. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; Alemania Fil: Zeisberger, Matthias. Universitat Jena; Alemania Fil: Gargiulo, Julian. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: de Menezes, Leonardo S.. Ludwig Maximilians Universitat; Alemania. Universidade Federal de Pernambuco; Brasil Fil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania. Imperial College London; Reino Unido. Monash University; Australia Fil: Schmidt, Markus A.. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; Alemania |
description |
Here, we unlock the properties of the recently introduced on-chip hollow-core microgap waveguide in the context of optofluidics which allows for intense light-water interaction over long lengths with fast response times. The nanoprinted waveguide operates by the antiresonance effect in the visible and near-infrared domain and includes a hollow core with defined gaps every 176 µm. The spectroscopic capabilities are demonstrated by various absorption-related experiments, showing that the Beer-Lambert law can be applied without any modification. In addition to revealing key performance parameters, time-resolved experiments showed a decisive improvement in diffusion times resulting from the lateral access provided by the microgaps. Overall, the microgap waveguide represents a pathway for on-chip spectroscopy in aqueous environments. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/219045 Kim, Jisoo; Bürger, Johannes; Jang, Bumjoon; Zeisberger, Matthias; Gargiulo, Julian; et al.; 3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy; Optical Society of America; Optics Express; 31; 2; 1-2023; 2833-2845 1094-4087 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/219045 |
identifier_str_mv |
Kim, Jisoo; Bürger, Johannes; Jang, Bumjoon; Zeisberger, Matthias; Gargiulo, Julian; et al.; 3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy; Optical Society of America; Optics Express; 31; 2; 1-2023; 2833-2845 1094-4087 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/oe/fulltext.cfm?uri=oe-31-2-2833&id=525084 info:eu-repo/semantics/altIdentifier/doi/10.1364/OE.475794 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Optical Society of America |
publisher.none.fl_str_mv |
Optical Society of America |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613627233959936 |
score |
13.070432 |