3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy

Autores
Kim, Jisoo; Bürger, Johannes; Jang, Bumjoon; Zeisberger, Matthias; Gargiulo, Julian; de Menezes, Leonardo S.; Maier, Stefan A.; Schmidt, Markus A.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Here, we unlock the properties of the recently introduced on-chip hollow-core microgap waveguide in the context of optofluidics which allows for intense light-water interaction over long lengths with fast response times. The nanoprinted waveguide operates by the antiresonance effect in the visible and near-infrared domain and includes a hollow core with defined gaps every 176 µm. The spectroscopic capabilities are demonstrated by various absorption-related experiments, showing that the Beer-Lambert law can be applied without any modification. In addition to revealing key performance parameters, time-resolved experiments showed a decisive improvement in diffusion times resulting from the lateral access provided by the microgaps. Overall, the microgap waveguide represents a pathway for on-chip spectroscopy in aqueous environments.
Fil: Kim, Jisoo. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; Alemania
Fil: Bürger, Johannes. Ludwig Maximilians Universitat; Alemania
Fil: Jang, Bumjoon. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; Alemania
Fil: Zeisberger, Matthias. Universitat Jena; Alemania
Fil: Gargiulo, Julian. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Menezes, Leonardo S.. Ludwig Maximilians Universitat; Alemania. Universidade Federal de Pernambuco; Brasil
Fil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania. Imperial College London; Reino Unido. Monash University; Australia
Fil: Schmidt, Markus A.. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; Alemania
Materia
3D-nanoprinted
Antiresonant waveguide
Lab on a chip
Optofluidic spectroscopy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/219045

id CONICETDig_79fedbdfe2d72873f3d18718a9fb8c90
oai_identifier_str oai:ri.conicet.gov.ar:11336/219045
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling 3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopyKim, JisooBürger, JohannesJang, BumjoonZeisberger, MatthiasGargiulo, Juliande Menezes, Leonardo S.Maier, Stefan A.Schmidt, Markus A.3D-nanoprintedAntiresonant waveguideLab on a chipOptofluidic spectroscopyhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Here, we unlock the properties of the recently introduced on-chip hollow-core microgap waveguide in the context of optofluidics which allows for intense light-water interaction over long lengths with fast response times. The nanoprinted waveguide operates by the antiresonance effect in the visible and near-infrared domain and includes a hollow core with defined gaps every 176 µm. The spectroscopic capabilities are demonstrated by various absorption-related experiments, showing that the Beer-Lambert law can be applied without any modification. In addition to revealing key performance parameters, time-resolved experiments showed a decisive improvement in diffusion times resulting from the lateral access provided by the microgaps. Overall, the microgap waveguide represents a pathway for on-chip spectroscopy in aqueous environments.Fil: Kim, Jisoo. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; AlemaniaFil: Bürger, Johannes. Ludwig Maximilians Universitat; AlemaniaFil: Jang, Bumjoon. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; AlemaniaFil: Zeisberger, Matthias. Universitat Jena; AlemaniaFil: Gargiulo, Julian. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: de Menezes, Leonardo S.. Ludwig Maximilians Universitat; Alemania. Universidade Federal de Pernambuco; BrasilFil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania. Imperial College London; Reino Unido. Monash University; AustraliaFil: Schmidt, Markus A.. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; AlemaniaOptical Society of America2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219045Kim, Jisoo; Bürger, Johannes; Jang, Bumjoon; Zeisberger, Matthias; Gargiulo, Julian; et al.; 3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy; Optical Society of America; Optics Express; 31; 2; 1-2023; 2833-28451094-4087CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/oe/fulltext.cfm?uri=oe-31-2-2833&id=525084info:eu-repo/semantics/altIdentifier/doi/10.1364/OE.475794info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:11Zoai:ri.conicet.gov.ar:11336/219045instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:11.901CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv 3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy
title 3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy
spellingShingle 3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy
Kim, Jisoo
3D-nanoprinted
Antiresonant waveguide
Lab on a chip
Optofluidic spectroscopy
title_short 3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy
title_full 3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy
title_fullStr 3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy
title_full_unstemmed 3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy
title_sort 3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy
dc.creator.none.fl_str_mv Kim, Jisoo
Bürger, Johannes
Jang, Bumjoon
Zeisberger, Matthias
Gargiulo, Julian
de Menezes, Leonardo S.
Maier, Stefan A.
Schmidt, Markus A.
author Kim, Jisoo
author_facet Kim, Jisoo
Bürger, Johannes
Jang, Bumjoon
Zeisberger, Matthias
Gargiulo, Julian
de Menezes, Leonardo S.
Maier, Stefan A.
Schmidt, Markus A.
author_role author
author2 Bürger, Johannes
Jang, Bumjoon
Zeisberger, Matthias
Gargiulo, Julian
de Menezes, Leonardo S.
Maier, Stefan A.
Schmidt, Markus A.
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv 3D-nanoprinted
Antiresonant waveguide
Lab on a chip
Optofluidic spectroscopy
topic 3D-nanoprinted
Antiresonant waveguide
Lab on a chip
Optofluidic spectroscopy
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Here, we unlock the properties of the recently introduced on-chip hollow-core microgap waveguide in the context of optofluidics which allows for intense light-water interaction over long lengths with fast response times. The nanoprinted waveguide operates by the antiresonance effect in the visible and near-infrared domain and includes a hollow core with defined gaps every 176 µm. The spectroscopic capabilities are demonstrated by various absorption-related experiments, showing that the Beer-Lambert law can be applied without any modification. In addition to revealing key performance parameters, time-resolved experiments showed a decisive improvement in diffusion times resulting from the lateral access provided by the microgaps. Overall, the microgap waveguide represents a pathway for on-chip spectroscopy in aqueous environments.
Fil: Kim, Jisoo. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; Alemania
Fil: Bürger, Johannes. Ludwig Maximilians Universitat; Alemania
Fil: Jang, Bumjoon. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; Alemania
Fil: Zeisberger, Matthias. Universitat Jena; Alemania
Fil: Gargiulo, Julian. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: de Menezes, Leonardo S.. Ludwig Maximilians Universitat; Alemania. Universidade Federal de Pernambuco; Brasil
Fil: Maier, Stefan A.. Ludwig Maximilians Universitat; Alemania. Imperial College London; Reino Unido. Monash University; Australia
Fil: Schmidt, Markus A.. Universitat Jena; Alemania. Leibniz Institute of Photonic Technology; Alemania
description Here, we unlock the properties of the recently introduced on-chip hollow-core microgap waveguide in the context of optofluidics which allows for intense light-water interaction over long lengths with fast response times. The nanoprinted waveguide operates by the antiresonance effect in the visible and near-infrared domain and includes a hollow core with defined gaps every 176 µm. The spectroscopic capabilities are demonstrated by various absorption-related experiments, showing that the Beer-Lambert law can be applied without any modification. In addition to revealing key performance parameters, time-resolved experiments showed a decisive improvement in diffusion times resulting from the lateral access provided by the microgaps. Overall, the microgap waveguide represents a pathway for on-chip spectroscopy in aqueous environments.
publishDate 2023
dc.date.none.fl_str_mv 2023-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/219045
Kim, Jisoo; Bürger, Johannes; Jang, Bumjoon; Zeisberger, Matthias; Gargiulo, Julian; et al.; 3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy; Optical Society of America; Optics Express; 31; 2; 1-2023; 2833-2845
1094-4087
CONICET Digital
CONICET
url http://hdl.handle.net/11336/219045
identifier_str_mv Kim, Jisoo; Bürger, Johannes; Jang, Bumjoon; Zeisberger, Matthias; Gargiulo, Julian; et al.; 3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for integrated optofluidic spectroscopy; Optical Society of America; Optics Express; 31; 2; 1-2023; 2833-2845
1094-4087
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/oe/fulltext.cfm?uri=oe-31-2-2833&id=525084
info:eu-repo/semantics/altIdentifier/doi/10.1364/OE.475794
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Optical Society of America
publisher.none.fl_str_mv Optical Society of America
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613627233959936
score 13.070432