Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides
- Autores
- Gómez, Álvaro; Martinez Ricci, Maria Luz; Depine, Ricardo Angel; Lakhtakia, Akhlesh
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We have analyzed electromagnetic wave propagation in photonic bandgap (PBG) structures comprising alternating layers of isotropic dielectric-magnetic materials with positive phase velocity and negative phase velocity, implemented in different waveguides of uniform cross-section (parallel-plate, rectangular, circular, and coaxial) and perfectly conducting walls. The structures could be either ideal (i.e. of infinite extent along the waveguide axis) or real (i.e. terminated at both ends with homogeneously filled waveguide sections). The spectral locations of the band gaps do not directly depend on the cross-sectional shape and dimensions, but on the cut-off parameter instead, for ideal structures. The band gaps of an ideal structure are located in spectral regions where the reflectance of the corresponding real structure is large. The real structures show four types of band gaps, only one type of which is due to the periodically repetitive constitution of the PBG structure; the remaining three types are not of the Bragg type.
Fil: Gómez, Álvaro. Universidad de Valladolid; España
Fil: Martinez Ricci, Maria Luz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina
Fil: Depine, Ricardo Angel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina
Fil: Lakhtakia, Akhlesh. State University of Pennsylvania; Estados Unidos - Materia
-
Circular Waveguides
Coaxial Waveguides
Gap Map
Negative Phase Velocity
Parallel-Plate Waveguide
Photonic Band Gap
Rectangular Waveguide - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/62086
Ver los metadatos del registro completo
id |
CONICETDig_715b5f2096b4bfd1a8ab57fcf4f9cbd0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/62086 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguidesGómez, ÁlvaroMartinez Ricci, Maria LuzDepine, Ricardo AngelLakhtakia, AkhleshCircular WaveguidesCoaxial WaveguidesGap MapNegative Phase VelocityParallel-Plate WaveguidePhotonic Band GapRectangular Waveguidehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We have analyzed electromagnetic wave propagation in photonic bandgap (PBG) structures comprising alternating layers of isotropic dielectric-magnetic materials with positive phase velocity and negative phase velocity, implemented in different waveguides of uniform cross-section (parallel-plate, rectangular, circular, and coaxial) and perfectly conducting walls. The structures could be either ideal (i.e. of infinite extent along the waveguide axis) or real (i.e. terminated at both ends with homogeneously filled waveguide sections). The spectral locations of the band gaps do not directly depend on the cross-sectional shape and dimensions, but on the cut-off parameter instead, for ideal structures. The band gaps of an ideal structure are located in spectral regions where the reflectance of the corresponding real structure is large. The real structures show four types of band gaps, only one type of which is due to the periodically repetitive constitution of the PBG structure; the remaining three types are not of the Bragg type.Fil: Gómez, Álvaro. Universidad de Valladolid; EspañaFil: Martinez Ricci, Maria Luz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; ArgentinaFil: Depine, Ricardo Angel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; ArgentinaFil: Lakhtakia, Akhlesh. State University of Pennsylvania; Estados UnidosTaylor & Francis Ltd2009-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/62086Gómez, Álvaro; Martinez Ricci, Maria Luz; Depine, Ricardo Angel; Lakhtakia, Akhlesh; Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides; Taylor & Francis Ltd; Journal of Modern Optics; 56; 15; 9-2009; 1688-16970950-0340CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/09500340903289128info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/09500340903289128info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:06:15Zoai:ri.conicet.gov.ar:11336/62086instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:06:15.921CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides |
title |
Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides |
spellingShingle |
Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides Gómez, Álvaro Circular Waveguides Coaxial Waveguides Gap Map Negative Phase Velocity Parallel-Plate Waveguide Photonic Band Gap Rectangular Waveguide |
title_short |
Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides |
title_full |
Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides |
title_fullStr |
Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides |
title_full_unstemmed |
Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides |
title_sort |
Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides |
dc.creator.none.fl_str_mv |
Gómez, Álvaro Martinez Ricci, Maria Luz Depine, Ricardo Angel Lakhtakia, Akhlesh |
author |
Gómez, Álvaro |
author_facet |
Gómez, Álvaro Martinez Ricci, Maria Luz Depine, Ricardo Angel Lakhtakia, Akhlesh |
author_role |
author |
author2 |
Martinez Ricci, Maria Luz Depine, Ricardo Angel Lakhtakia, Akhlesh |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Circular Waveguides Coaxial Waveguides Gap Map Negative Phase Velocity Parallel-Plate Waveguide Photonic Band Gap Rectangular Waveguide |
topic |
Circular Waveguides Coaxial Waveguides Gap Map Negative Phase Velocity Parallel-Plate Waveguide Photonic Band Gap Rectangular Waveguide |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We have analyzed electromagnetic wave propagation in photonic bandgap (PBG) structures comprising alternating layers of isotropic dielectric-magnetic materials with positive phase velocity and negative phase velocity, implemented in different waveguides of uniform cross-section (parallel-plate, rectangular, circular, and coaxial) and perfectly conducting walls. The structures could be either ideal (i.e. of infinite extent along the waveguide axis) or real (i.e. terminated at both ends with homogeneously filled waveguide sections). The spectral locations of the band gaps do not directly depend on the cross-sectional shape and dimensions, but on the cut-off parameter instead, for ideal structures. The band gaps of an ideal structure are located in spectral regions where the reflectance of the corresponding real structure is large. The real structures show four types of band gaps, only one type of which is due to the periodically repetitive constitution of the PBG structure; the remaining three types are not of the Bragg type. Fil: Gómez, Álvaro. Universidad de Valladolid; España Fil: Martinez Ricci, Maria Luz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina Fil: Depine, Ricardo Angel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina Fil: Lakhtakia, Akhlesh. State University of Pennsylvania; Estados Unidos |
description |
We have analyzed electromagnetic wave propagation in photonic bandgap (PBG) structures comprising alternating layers of isotropic dielectric-magnetic materials with positive phase velocity and negative phase velocity, implemented in different waveguides of uniform cross-section (parallel-plate, rectangular, circular, and coaxial) and perfectly conducting walls. The structures could be either ideal (i.e. of infinite extent along the waveguide axis) or real (i.e. terminated at both ends with homogeneously filled waveguide sections). The spectral locations of the band gaps do not directly depend on the cross-sectional shape and dimensions, but on the cut-off parameter instead, for ideal structures. The band gaps of an ideal structure are located in spectral regions where the reflectance of the corresponding real structure is large. The real structures show four types of band gaps, only one type of which is due to the periodically repetitive constitution of the PBG structure; the remaining three types are not of the Bragg type. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/62086 Gómez, Álvaro; Martinez Ricci, Maria Luz; Depine, Ricardo Angel; Lakhtakia, Akhlesh; Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides; Taylor & Francis Ltd; Journal of Modern Optics; 56; 15; 9-2009; 1688-1697 0950-0340 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/62086 |
identifier_str_mv |
Gómez, Álvaro; Martinez Ricci, Maria Luz; Depine, Ricardo Angel; Lakhtakia, Akhlesh; Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides; Taylor & Francis Ltd; Journal of Modern Optics; 56; 15; 9-2009; 1688-1697 0950-0340 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/09500340903289128 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/09500340903289128 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613909370109952 |
score |
13.070432 |