Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides

Autores
Gómez, Álvaro; Martinez Ricci, Maria Luz; Depine, Ricardo Angel; Lakhtakia, Akhlesh
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We have analyzed electromagnetic wave propagation in photonic bandgap (PBG) structures comprising alternating layers of isotropic dielectric-magnetic materials with positive phase velocity and negative phase velocity, implemented in different waveguides of uniform cross-section (parallel-plate, rectangular, circular, and coaxial) and perfectly conducting walls. The structures could be either ideal (i.e. of infinite extent along the waveguide axis) or real (i.e. terminated at both ends with homogeneously filled waveguide sections). The spectral locations of the band gaps do not directly depend on the cross-sectional shape and dimensions, but on the cut-off parameter instead, for ideal structures. The band gaps of an ideal structure are located in spectral regions where the reflectance of the corresponding real structure is large. The real structures show four types of band gaps, only one type of which is due to the periodically repetitive constitution of the PBG structure; the remaining three types are not of the Bragg type.
Fil: Gómez, Álvaro. Universidad de Valladolid; España
Fil: Martinez Ricci, Maria Luz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina
Fil: Depine, Ricardo Angel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina
Fil: Lakhtakia, Akhlesh. State University of Pennsylvania; Estados Unidos
Materia
Circular Waveguides
Coaxial Waveguides
Gap Map
Negative Phase Velocity
Parallel-Plate Waveguide
Photonic Band Gap
Rectangular Waveguide
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/62086

id CONICETDig_715b5f2096b4bfd1a8ab57fcf4f9cbd0
oai_identifier_str oai:ri.conicet.gov.ar:11336/62086
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguidesGómez, ÁlvaroMartinez Ricci, Maria LuzDepine, Ricardo AngelLakhtakia, AkhleshCircular WaveguidesCoaxial WaveguidesGap MapNegative Phase VelocityParallel-Plate WaveguidePhotonic Band GapRectangular Waveguidehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We have analyzed electromagnetic wave propagation in photonic bandgap (PBG) structures comprising alternating layers of isotropic dielectric-magnetic materials with positive phase velocity and negative phase velocity, implemented in different waveguides of uniform cross-section (parallel-plate, rectangular, circular, and coaxial) and perfectly conducting walls. The structures could be either ideal (i.e. of infinite extent along the waveguide axis) or real (i.e. terminated at both ends with homogeneously filled waveguide sections). The spectral locations of the band gaps do not directly depend on the cross-sectional shape and dimensions, but on the cut-off parameter instead, for ideal structures. The band gaps of an ideal structure are located in spectral regions where the reflectance of the corresponding real structure is large. The real structures show four types of band gaps, only one type of which is due to the periodically repetitive constitution of the PBG structure; the remaining three types are not of the Bragg type.Fil: Gómez, Álvaro. Universidad de Valladolid; EspañaFil: Martinez Ricci, Maria Luz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; ArgentinaFil: Depine, Ricardo Angel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; ArgentinaFil: Lakhtakia, Akhlesh. State University of Pennsylvania; Estados UnidosTaylor & Francis Ltd2009-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/62086Gómez, Álvaro; Martinez Ricci, Maria Luz; Depine, Ricardo Angel; Lakhtakia, Akhlesh; Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides; Taylor & Francis Ltd; Journal of Modern Optics; 56; 15; 9-2009; 1688-16970950-0340CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/09500340903289128info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/09500340903289128info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:06:15Zoai:ri.conicet.gov.ar:11336/62086instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:06:15.921CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides
title Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides
spellingShingle Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides
Gómez, Álvaro
Circular Waveguides
Coaxial Waveguides
Gap Map
Negative Phase Velocity
Parallel-Plate Waveguide
Photonic Band Gap
Rectangular Waveguide
title_short Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides
title_full Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides
title_fullStr Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides
title_full_unstemmed Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides
title_sort Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides
dc.creator.none.fl_str_mv Gómez, Álvaro
Martinez Ricci, Maria Luz
Depine, Ricardo Angel
Lakhtakia, Akhlesh
author Gómez, Álvaro
author_facet Gómez, Álvaro
Martinez Ricci, Maria Luz
Depine, Ricardo Angel
Lakhtakia, Akhlesh
author_role author
author2 Martinez Ricci, Maria Luz
Depine, Ricardo Angel
Lakhtakia, Akhlesh
author2_role author
author
author
dc.subject.none.fl_str_mv Circular Waveguides
Coaxial Waveguides
Gap Map
Negative Phase Velocity
Parallel-Plate Waveguide
Photonic Band Gap
Rectangular Waveguide
topic Circular Waveguides
Coaxial Waveguides
Gap Map
Negative Phase Velocity
Parallel-Plate Waveguide
Photonic Band Gap
Rectangular Waveguide
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We have analyzed electromagnetic wave propagation in photonic bandgap (PBG) structures comprising alternating layers of isotropic dielectric-magnetic materials with positive phase velocity and negative phase velocity, implemented in different waveguides of uniform cross-section (parallel-plate, rectangular, circular, and coaxial) and perfectly conducting walls. The structures could be either ideal (i.e. of infinite extent along the waveguide axis) or real (i.e. terminated at both ends with homogeneously filled waveguide sections). The spectral locations of the band gaps do not directly depend on the cross-sectional shape and dimensions, but on the cut-off parameter instead, for ideal structures. The band gaps of an ideal structure are located in spectral regions where the reflectance of the corresponding real structure is large. The real structures show four types of band gaps, only one type of which is due to the periodically repetitive constitution of the PBG structure; the remaining three types are not of the Bragg type.
Fil: Gómez, Álvaro. Universidad de Valladolid; España
Fil: Martinez Ricci, Maria Luz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina
Fil: Depine, Ricardo Angel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Grupo de Electromagnetismo Aplicado; Argentina
Fil: Lakhtakia, Akhlesh. State University of Pennsylvania; Estados Unidos
description We have analyzed electromagnetic wave propagation in photonic bandgap (PBG) structures comprising alternating layers of isotropic dielectric-magnetic materials with positive phase velocity and negative phase velocity, implemented in different waveguides of uniform cross-section (parallel-plate, rectangular, circular, and coaxial) and perfectly conducting walls. The structures could be either ideal (i.e. of infinite extent along the waveguide axis) or real (i.e. terminated at both ends with homogeneously filled waveguide sections). The spectral locations of the band gaps do not directly depend on the cross-sectional shape and dimensions, but on the cut-off parameter instead, for ideal structures. The band gaps of an ideal structure are located in spectral regions where the reflectance of the corresponding real structure is large. The real structures show four types of band gaps, only one type of which is due to the periodically repetitive constitution of the PBG structure; the remaining three types are not of the Bragg type.
publishDate 2009
dc.date.none.fl_str_mv 2009-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/62086
Gómez, Álvaro; Martinez Ricci, Maria Luz; Depine, Ricardo Angel; Lakhtakia, Akhlesh; Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides; Taylor & Francis Ltd; Journal of Modern Optics; 56; 15; 9-2009; 1688-1697
0950-0340
CONICET Digital
CONICET
url http://hdl.handle.net/11336/62086
identifier_str_mv Gómez, Álvaro; Martinez Ricci, Maria Luz; Depine, Ricardo Angel; Lakhtakia, Akhlesh; Photonic band gap materials comprising positive-phase-velocity and negative-phase-velocity layers in waveguides; Taylor & Francis Ltd; Journal of Modern Optics; 56; 15; 9-2009; 1688-1697
0950-0340
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1080/09500340903289128
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/09500340903289128
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis Ltd
publisher.none.fl_str_mv Taylor & Francis Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613909370109952
score 13.070432