Critical exponents of the yielding transition of amorphous solids

Autores
Fernández Aguirre, I.; Jagla, Eduardo Alberto
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate numerically the yielding transition of a two-dimensional model amorphous solid under external shear. We use a scalar model in terms of values of the total local strain, derived from the full (tensorial) description of the elastic interactions in the system, in which plastic deformations are accounted for by introducing a stochastic "plastic disorder" potential. This scalar model is seen to be equivalent to a collection of Prandtl-Tomlinson particles, which are coupled through an Eshelby quadrupolar kernel. Numerical simulations of this scalar model reveal that the strain rate versus stress curve, close to the critical stress, is of the form γ∼(σ-σc)β. Remarkably, we find that the value of β depends on details of the microscopic plastic potential used, confirming and giving additional support to results previously obtained with the full tensorial model. To rationalize this result, we argue that the Eshelby interaction in the scalar model can be treated to a good approximation in a sort of "dynamical" mean field, which corresponds to a Prandtl-Tomlinson particle that is driven by the applied strain rate in the presence of a stochastic noise generated by all other particles. The dynamics of this Prandtl-Tomlinson particle displays different values of the β exponent depending on the analytical properties of the microscopic potential, thus giving support to the results of the numerical simulations. Moreover, we find that other critical exponents that depend on details of the dynamics show also a dependence with the form of the disorder, while static exponents are independent of the details of the disorder. Finally, we show how our scalar model relates to other elastoplastic models and to the widely used mean-field version known as the Hébraud-Lequeux model.
Fil: Fernández Aguirre, I.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Jagla, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Materia
YIELDING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/106143

id CONICETDig_79edc9957cff0fac86237ddfb2c1acea
oai_identifier_str oai:ri.conicet.gov.ar:11336/106143
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Critical exponents of the yielding transition of amorphous solidsFernández Aguirre, I.Jagla, Eduardo AlbertoYIELDINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We investigate numerically the yielding transition of a two-dimensional model amorphous solid under external shear. We use a scalar model in terms of values of the total local strain, derived from the full (tensorial) description of the elastic interactions in the system, in which plastic deformations are accounted for by introducing a stochastic "plastic disorder" potential. This scalar model is seen to be equivalent to a collection of Prandtl-Tomlinson particles, which are coupled through an Eshelby quadrupolar kernel. Numerical simulations of this scalar model reveal that the strain rate versus stress curve, close to the critical stress, is of the form γ∼(σ-σc)β. Remarkably, we find that the value of β depends on details of the microscopic plastic potential used, confirming and giving additional support to results previously obtained with the full tensorial model. To rationalize this result, we argue that the Eshelby interaction in the scalar model can be treated to a good approximation in a sort of "dynamical" mean field, which corresponds to a Prandtl-Tomlinson particle that is driven by the applied strain rate in the presence of a stochastic noise generated by all other particles. The dynamics of this Prandtl-Tomlinson particle displays different values of the β exponent depending on the analytical properties of the microscopic potential, thus giving support to the results of the numerical simulations. Moreover, we find that other critical exponents that depend on details of the dynamics show also a dependence with the form of the disorder, while static exponents are independent of the details of the disorder. Finally, we show how our scalar model relates to other elastoplastic models and to the widely used mean-field version known as the Hébraud-Lequeux model.Fil: Fernández Aguirre, I.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Jagla, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaAmerican Physical Society2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106143Fernández Aguirre, I.; Jagla, Eduardo Alberto; Critical exponents of the yielding transition of amorphous solids; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 98; 1; 7-2018; 1-132470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.98.013002info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.013002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:30Zoai:ri.conicet.gov.ar:11336/106143instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:31.042CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Critical exponents of the yielding transition of amorphous solids
title Critical exponents of the yielding transition of amorphous solids
spellingShingle Critical exponents of the yielding transition of amorphous solids
Fernández Aguirre, I.
YIELDING
title_short Critical exponents of the yielding transition of amorphous solids
title_full Critical exponents of the yielding transition of amorphous solids
title_fullStr Critical exponents of the yielding transition of amorphous solids
title_full_unstemmed Critical exponents of the yielding transition of amorphous solids
title_sort Critical exponents of the yielding transition of amorphous solids
dc.creator.none.fl_str_mv Fernández Aguirre, I.
Jagla, Eduardo Alberto
author Fernández Aguirre, I.
author_facet Fernández Aguirre, I.
Jagla, Eduardo Alberto
author_role author
author2 Jagla, Eduardo Alberto
author2_role author
dc.subject.none.fl_str_mv YIELDING
topic YIELDING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We investigate numerically the yielding transition of a two-dimensional model amorphous solid under external shear. We use a scalar model in terms of values of the total local strain, derived from the full (tensorial) description of the elastic interactions in the system, in which plastic deformations are accounted for by introducing a stochastic "plastic disorder" potential. This scalar model is seen to be equivalent to a collection of Prandtl-Tomlinson particles, which are coupled through an Eshelby quadrupolar kernel. Numerical simulations of this scalar model reveal that the strain rate versus stress curve, close to the critical stress, is of the form γ∼(σ-σc)β. Remarkably, we find that the value of β depends on details of the microscopic plastic potential used, confirming and giving additional support to results previously obtained with the full tensorial model. To rationalize this result, we argue that the Eshelby interaction in the scalar model can be treated to a good approximation in a sort of "dynamical" mean field, which corresponds to a Prandtl-Tomlinson particle that is driven by the applied strain rate in the presence of a stochastic noise generated by all other particles. The dynamics of this Prandtl-Tomlinson particle displays different values of the β exponent depending on the analytical properties of the microscopic potential, thus giving support to the results of the numerical simulations. Moreover, we find that other critical exponents that depend on details of the dynamics show also a dependence with the form of the disorder, while static exponents are independent of the details of the disorder. Finally, we show how our scalar model relates to other elastoplastic models and to the widely used mean-field version known as the Hébraud-Lequeux model.
Fil: Fernández Aguirre, I.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Jagla, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
description We investigate numerically the yielding transition of a two-dimensional model amorphous solid under external shear. We use a scalar model in terms of values of the total local strain, derived from the full (tensorial) description of the elastic interactions in the system, in which plastic deformations are accounted for by introducing a stochastic "plastic disorder" potential. This scalar model is seen to be equivalent to a collection of Prandtl-Tomlinson particles, which are coupled through an Eshelby quadrupolar kernel. Numerical simulations of this scalar model reveal that the strain rate versus stress curve, close to the critical stress, is of the form γ∼(σ-σc)β. Remarkably, we find that the value of β depends on details of the microscopic plastic potential used, confirming and giving additional support to results previously obtained with the full tensorial model. To rationalize this result, we argue that the Eshelby interaction in the scalar model can be treated to a good approximation in a sort of "dynamical" mean field, which corresponds to a Prandtl-Tomlinson particle that is driven by the applied strain rate in the presence of a stochastic noise generated by all other particles. The dynamics of this Prandtl-Tomlinson particle displays different values of the β exponent depending on the analytical properties of the microscopic potential, thus giving support to the results of the numerical simulations. Moreover, we find that other critical exponents that depend on details of the dynamics show also a dependence with the form of the disorder, while static exponents are independent of the details of the disorder. Finally, we show how our scalar model relates to other elastoplastic models and to the widely used mean-field version known as the Hébraud-Lequeux model.
publishDate 2018
dc.date.none.fl_str_mv 2018-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/106143
Fernández Aguirre, I.; Jagla, Eduardo Alberto; Critical exponents of the yielding transition of amorphous solids; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 98; 1; 7-2018; 1-13
2470-0053
CONICET Digital
CONICET
url http://hdl.handle.net/11336/106143
identifier_str_mv Fernández Aguirre, I.; Jagla, Eduardo Alberto; Critical exponents of the yielding transition of amorphous solids; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 98; 1; 7-2018; 1-13
2470-0053
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.98.013002
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.98.013002
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613995190812672
score 13.070432