Yielding of amorphous solids at finite temperatures

Autores
Ferrero, Ezequiel E.; Kolton, Alejandro Benedykt; Jagla, Eduardo Alberto
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We analyze the effect of temperature on the yielding transition of amorphous solids using different coarse-grained model approaches. On one hand, we use an elastoplastic model, with temperature introduced in the form of an Arrhenius activation law over energy barriers. On the other hand, we implement a Hamiltonian model with a relaxational dynamics, where temperature is introduced in the form of a Langevin stochastic force. In both cases, temperature transforms the sharp transition of the athermal case in a smooth crossover. We show that this thermally smoothed transition follows a simple scaling form that can be fully explained using a one-particle system driven in a potential under the combined action of a mechanical and a thermal noise, namely, the stochastically driven Prandtl-Tomlinson model. Our work harmonizes the results of simple models for amorphous solids with the phenomenological ∼T2/3 law proposed by Johnson and Samwer [Phys. Rev. Lett. 95, 195501 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.195501] in the framework of experimental metallic glasses yield observations, and extend it to a generic case. Conclusively, our results strengthen the interpretation of the yielding transition as an effective mean-field phenomenon.
Fil: Ferrero, Ezequiel E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Kolton, Alejandro Benedykt. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Jagla, Eduardo Alberto. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Materia
DISORDER
YIELDING
DEPINNING
THERMAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/167463

id CONICETDig_18714ff0b56218f6be049bc097639d18
oai_identifier_str oai:ri.conicet.gov.ar:11336/167463
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Yielding of amorphous solids at finite temperaturesFerrero, Ezequiel E.Kolton, Alejandro BenedyktJagla, Eduardo AlbertoDISORDERYIELDINGDEPINNINGTHERMALhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We analyze the effect of temperature on the yielding transition of amorphous solids using different coarse-grained model approaches. On one hand, we use an elastoplastic model, with temperature introduced in the form of an Arrhenius activation law over energy barriers. On the other hand, we implement a Hamiltonian model with a relaxational dynamics, where temperature is introduced in the form of a Langevin stochastic force. In both cases, temperature transforms the sharp transition of the athermal case in a smooth crossover. We show that this thermally smoothed transition follows a simple scaling form that can be fully explained using a one-particle system driven in a potential under the combined action of a mechanical and a thermal noise, namely, the stochastically driven Prandtl-Tomlinson model. Our work harmonizes the results of simple models for amorphous solids with the phenomenological ∼T2/3 law proposed by Johnson and Samwer [Phys. Rev. Lett. 95, 195501 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.195501] in the framework of experimental metallic glasses yield observations, and extend it to a generic case. Conclusively, our results strengthen the interpretation of the yielding transition as an effective mean-field phenomenon.Fil: Ferrero, Ezequiel E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Kolton, Alejandro Benedykt. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Jagla, Eduardo Alberto. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaAmerican Physical Society2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167463Ferrero, Ezequiel E.; Kolton, Alejandro Benedykt; Jagla, Eduardo Alberto; Yielding of amorphous solids at finite temperatures; American Physical Society; Physical Review Materials; 5; 11; 11-2021; 1-162475-9953CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevMaterials.5.115602info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevMaterials.5.115602info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:55Zoai:ri.conicet.gov.ar:11336/167463instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:55.424CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Yielding of amorphous solids at finite temperatures
title Yielding of amorphous solids at finite temperatures
spellingShingle Yielding of amorphous solids at finite temperatures
Ferrero, Ezequiel E.
DISORDER
YIELDING
DEPINNING
THERMAL
title_short Yielding of amorphous solids at finite temperatures
title_full Yielding of amorphous solids at finite temperatures
title_fullStr Yielding of amorphous solids at finite temperatures
title_full_unstemmed Yielding of amorphous solids at finite temperatures
title_sort Yielding of amorphous solids at finite temperatures
dc.creator.none.fl_str_mv Ferrero, Ezequiel E.
Kolton, Alejandro Benedykt
Jagla, Eduardo Alberto
author Ferrero, Ezequiel E.
author_facet Ferrero, Ezequiel E.
Kolton, Alejandro Benedykt
Jagla, Eduardo Alberto
author_role author
author2 Kolton, Alejandro Benedykt
Jagla, Eduardo Alberto
author2_role author
author
dc.subject.none.fl_str_mv DISORDER
YIELDING
DEPINNING
THERMAL
topic DISORDER
YIELDING
DEPINNING
THERMAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We analyze the effect of temperature on the yielding transition of amorphous solids using different coarse-grained model approaches. On one hand, we use an elastoplastic model, with temperature introduced in the form of an Arrhenius activation law over energy barriers. On the other hand, we implement a Hamiltonian model with a relaxational dynamics, where temperature is introduced in the form of a Langevin stochastic force. In both cases, temperature transforms the sharp transition of the athermal case in a smooth crossover. We show that this thermally smoothed transition follows a simple scaling form that can be fully explained using a one-particle system driven in a potential under the combined action of a mechanical and a thermal noise, namely, the stochastically driven Prandtl-Tomlinson model. Our work harmonizes the results of simple models for amorphous solids with the phenomenological ∼T2/3 law proposed by Johnson and Samwer [Phys. Rev. Lett. 95, 195501 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.195501] in the framework of experimental metallic glasses yield observations, and extend it to a generic case. Conclusively, our results strengthen the interpretation of the yielding transition as an effective mean-field phenomenon.
Fil: Ferrero, Ezequiel E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Kolton, Alejandro Benedykt. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Jagla, Eduardo Alberto. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
description We analyze the effect of temperature on the yielding transition of amorphous solids using different coarse-grained model approaches. On one hand, we use an elastoplastic model, with temperature introduced in the form of an Arrhenius activation law over energy barriers. On the other hand, we implement a Hamiltonian model with a relaxational dynamics, where temperature is introduced in the form of a Langevin stochastic force. In both cases, temperature transforms the sharp transition of the athermal case in a smooth crossover. We show that this thermally smoothed transition follows a simple scaling form that can be fully explained using a one-particle system driven in a potential under the combined action of a mechanical and a thermal noise, namely, the stochastically driven Prandtl-Tomlinson model. Our work harmonizes the results of simple models for amorphous solids with the phenomenological ∼T2/3 law proposed by Johnson and Samwer [Phys. Rev. Lett. 95, 195501 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.195501] in the framework of experimental metallic glasses yield observations, and extend it to a generic case. Conclusively, our results strengthen the interpretation of the yielding transition as an effective mean-field phenomenon.
publishDate 2021
dc.date.none.fl_str_mv 2021-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/167463
Ferrero, Ezequiel E.; Kolton, Alejandro Benedykt; Jagla, Eduardo Alberto; Yielding of amorphous solids at finite temperatures; American Physical Society; Physical Review Materials; 5; 11; 11-2021; 1-16
2475-9953
CONICET Digital
CONICET
url http://hdl.handle.net/11336/167463
identifier_str_mv Ferrero, Ezequiel E.; Kolton, Alejandro Benedykt; Jagla, Eduardo Alberto; Yielding of amorphous solids at finite temperatures; American Physical Society; Physical Review Materials; 5; 11; 11-2021; 1-16
2475-9953
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevMaterials.5.115602
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevMaterials.5.115602
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981384364228608
score 12.48226