Trace metal and organic biosignatures in digitate stromatolites from terrestrial siliceous hot spring deposits: Implications for the exploration of martian life

Autores
Nersezova, Ema E.; Rowe, Michael C.; Campbell, Kathleen A.; Langendam, Andrew; Tollemache, Cherie; Lyon, Barbara; Galar, Amanda; Guido, Diego Martin; Teece, Bronwyn L.; Hamilton, Trinity L.
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Novel biosignatures of laminated, microbial, digitate sedimentary structures – stromatolites – from modern geothermal fields of the Taup¯o Volcanic Zone, New Zealand, and from El Tatio, Chile, provide an opportunity to investigate evidence of extremophile life preserved in siliceous hot spring deposits, or sinters, interpreted as analogs for early life on Earth and possibly Mars. Synchrotron-μXRF, electron microprobe analysis, Raman spectroscopy, and optical microscopy are used in a coordinated approach to identify corroborating textural and chemical (organic, inorganic) evidence of life in these modern, opaline (amorphous) siliceous materials. Fluid mobile elements, such as As and Sr, track the growth history of the digitate structures. Trace element enrichments of Ca, Al, Ga, +/ Fe, Mn, As, Rb, Cs, and Sr, are identified in silicified sheaths of microbial filaments embedded within the sinter. In contrast, silicified diatoms in some sinter samples show no trace element enrichment. Gallium enrichments have also been observed in other 16 ka and Jurassic (150 Ma) microbial palisade sinter textures, suggesting the potential for preservation through geologic time, even after recrystallization to quartz. Raman analysis reveals spectra of organics, consistent with pigments for UV protection in cyanobacteria, in silicified sheaths around microbial filaments and are co-located with trace metal enrichments in digitate structures. Due to spectral bands, the location of these molecules (i.e., in the sheaths), and the sampling locations, we ascribe the spectra to scytonemin and carotenoid class molecules. The combined analytical approach outlined here provides a robust means to assess the validity of novel biosignatures, with application to the exploration of Mars, where preservation of opaline silica in >3.6 Ga deposits has the potential to preserve a range of microbial biosignatures.
Fil: Nersezova, Ema E.. University of Auckland; Nueva Zelanda
Fil: Rowe, Michael C.. University of Auckland; Nueva Zelanda
Fil: Campbell, Kathleen A.. University of Auckland; Nueva Zelanda
Fil: Langendam, Andrew. University of Auckland; Nueva Zelanda
Fil: Tollemache, Cherie. University of Auckland; Nueva Zelanda
Fil: Lyon, Barbara. University of Auckland; Nueva Zelanda
Fil: Galar, Amanda. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Recursos Minerales. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Recursos Minerales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Guido, Diego Martin. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Recursos Minerales. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Recursos Minerales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Teece, Bronwyn L.. University of Auckland; Nueva Zelanda
Fil: Hamilton, Trinity L.. University Of Minnessota; Estados Unidos
Materia
biosignature
stromatolite
raman
trace element
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/238344

id CONICETDig_79c69eb4aa8e52729beac5fd4923daa6
oai_identifier_str oai:ri.conicet.gov.ar:11336/238344
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Trace metal and organic biosignatures in digitate stromatolites from terrestrial siliceous hot spring deposits: Implications for the exploration of martian lifeNersezova, Ema E.Rowe, Michael C.Campbell, Kathleen A.Langendam, AndrewTollemache, CherieLyon, BarbaraGalar, AmandaGuido, Diego MartinTeece, Bronwyn L.Hamilton, Trinity L.biosignaturestromatoliteramantrace elementhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Novel biosignatures of laminated, microbial, digitate sedimentary structures – stromatolites – from modern geothermal fields of the Taup¯o Volcanic Zone, New Zealand, and from El Tatio, Chile, provide an opportunity to investigate evidence of extremophile life preserved in siliceous hot spring deposits, or sinters, interpreted as analogs for early life on Earth and possibly Mars. Synchrotron-μXRF, electron microprobe analysis, Raman spectroscopy, and optical microscopy are used in a coordinated approach to identify corroborating textural and chemical (organic, inorganic) evidence of life in these modern, opaline (amorphous) siliceous materials. Fluid mobile elements, such as As and Sr, track the growth history of the digitate structures. Trace element enrichments of Ca, Al, Ga, +/ Fe, Mn, As, Rb, Cs, and Sr, are identified in silicified sheaths of microbial filaments embedded within the sinter. In contrast, silicified diatoms in some sinter samples show no trace element enrichment. Gallium enrichments have also been observed in other 16 ka and Jurassic (150 Ma) microbial palisade sinter textures, suggesting the potential for preservation through geologic time, even after recrystallization to quartz. Raman analysis reveals spectra of organics, consistent with pigments for UV protection in cyanobacteria, in silicified sheaths around microbial filaments and are co-located with trace metal enrichments in digitate structures. Due to spectral bands, the location of these molecules (i.e., in the sheaths), and the sampling locations, we ascribe the spectra to scytonemin and carotenoid class molecules. The combined analytical approach outlined here provides a robust means to assess the validity of novel biosignatures, with application to the exploration of Mars, where preservation of opaline silica in >3.6 Ga deposits has the potential to preserve a range of microbial biosignatures.Fil: Nersezova, Ema E.. University of Auckland; Nueva ZelandaFil: Rowe, Michael C.. University of Auckland; Nueva ZelandaFil: Campbell, Kathleen A.. University of Auckland; Nueva ZelandaFil: Langendam, Andrew. University of Auckland; Nueva ZelandaFil: Tollemache, Cherie. University of Auckland; Nueva ZelandaFil: Lyon, Barbara. University of Auckland; Nueva ZelandaFil: Galar, Amanda. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Recursos Minerales. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Recursos Minerales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Guido, Diego Martin. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Recursos Minerales. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Recursos Minerales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Teece, Bronwyn L.. University of Auckland; Nueva ZelandaFil: Hamilton, Trinity L.. University Of Minnessota; Estados UnidosElsevier Science2024-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/238344Nersezova, Ema E.; Rowe, Michael C.; Campbell, Kathleen A.; Langendam, Andrew; Tollemache, Cherie; et al.; Trace metal and organic biosignatures in digitate stromatolites from terrestrial siliceous hot spring deposits: Implications for the exploration of martian life; Elsevier Science; Chemical Geology; 661; 9-2024; 1-170009-2541CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0009254124002742info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemgeo.2024.122194info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:22Zoai:ri.conicet.gov.ar:11336/238344instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:23.093CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Trace metal and organic biosignatures in digitate stromatolites from terrestrial siliceous hot spring deposits: Implications for the exploration of martian life
title Trace metal and organic biosignatures in digitate stromatolites from terrestrial siliceous hot spring deposits: Implications for the exploration of martian life
spellingShingle Trace metal and organic biosignatures in digitate stromatolites from terrestrial siliceous hot spring deposits: Implications for the exploration of martian life
Nersezova, Ema E.
biosignature
stromatolite
raman
trace element
title_short Trace metal and organic biosignatures in digitate stromatolites from terrestrial siliceous hot spring deposits: Implications for the exploration of martian life
title_full Trace metal and organic biosignatures in digitate stromatolites from terrestrial siliceous hot spring deposits: Implications for the exploration of martian life
title_fullStr Trace metal and organic biosignatures in digitate stromatolites from terrestrial siliceous hot spring deposits: Implications for the exploration of martian life
title_full_unstemmed Trace metal and organic biosignatures in digitate stromatolites from terrestrial siliceous hot spring deposits: Implications for the exploration of martian life
title_sort Trace metal and organic biosignatures in digitate stromatolites from terrestrial siliceous hot spring deposits: Implications for the exploration of martian life
dc.creator.none.fl_str_mv Nersezova, Ema E.
Rowe, Michael C.
Campbell, Kathleen A.
Langendam, Andrew
Tollemache, Cherie
Lyon, Barbara
Galar, Amanda
Guido, Diego Martin
Teece, Bronwyn L.
Hamilton, Trinity L.
author Nersezova, Ema E.
author_facet Nersezova, Ema E.
Rowe, Michael C.
Campbell, Kathleen A.
Langendam, Andrew
Tollemache, Cherie
Lyon, Barbara
Galar, Amanda
Guido, Diego Martin
Teece, Bronwyn L.
Hamilton, Trinity L.
author_role author
author2 Rowe, Michael C.
Campbell, Kathleen A.
Langendam, Andrew
Tollemache, Cherie
Lyon, Barbara
Galar, Amanda
Guido, Diego Martin
Teece, Bronwyn L.
Hamilton, Trinity L.
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv biosignature
stromatolite
raman
trace element
topic biosignature
stromatolite
raman
trace element
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Novel biosignatures of laminated, microbial, digitate sedimentary structures – stromatolites – from modern geothermal fields of the Taup¯o Volcanic Zone, New Zealand, and from El Tatio, Chile, provide an opportunity to investigate evidence of extremophile life preserved in siliceous hot spring deposits, or sinters, interpreted as analogs for early life on Earth and possibly Mars. Synchrotron-μXRF, electron microprobe analysis, Raman spectroscopy, and optical microscopy are used in a coordinated approach to identify corroborating textural and chemical (organic, inorganic) evidence of life in these modern, opaline (amorphous) siliceous materials. Fluid mobile elements, such as As and Sr, track the growth history of the digitate structures. Trace element enrichments of Ca, Al, Ga, +/ Fe, Mn, As, Rb, Cs, and Sr, are identified in silicified sheaths of microbial filaments embedded within the sinter. In contrast, silicified diatoms in some sinter samples show no trace element enrichment. Gallium enrichments have also been observed in other 16 ka and Jurassic (150 Ma) microbial palisade sinter textures, suggesting the potential for preservation through geologic time, even after recrystallization to quartz. Raman analysis reveals spectra of organics, consistent with pigments for UV protection in cyanobacteria, in silicified sheaths around microbial filaments and are co-located with trace metal enrichments in digitate structures. Due to spectral bands, the location of these molecules (i.e., in the sheaths), and the sampling locations, we ascribe the spectra to scytonemin and carotenoid class molecules. The combined analytical approach outlined here provides a robust means to assess the validity of novel biosignatures, with application to the exploration of Mars, where preservation of opaline silica in >3.6 Ga deposits has the potential to preserve a range of microbial biosignatures.
Fil: Nersezova, Ema E.. University of Auckland; Nueva Zelanda
Fil: Rowe, Michael C.. University of Auckland; Nueva Zelanda
Fil: Campbell, Kathleen A.. University of Auckland; Nueva Zelanda
Fil: Langendam, Andrew. University of Auckland; Nueva Zelanda
Fil: Tollemache, Cherie. University of Auckland; Nueva Zelanda
Fil: Lyon, Barbara. University of Auckland; Nueva Zelanda
Fil: Galar, Amanda. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Recursos Minerales. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Recursos Minerales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Guido, Diego Martin. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Recursos Minerales. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Recursos Minerales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Teece, Bronwyn L.. University of Auckland; Nueva Zelanda
Fil: Hamilton, Trinity L.. University Of Minnessota; Estados Unidos
description Novel biosignatures of laminated, microbial, digitate sedimentary structures – stromatolites – from modern geothermal fields of the Taup¯o Volcanic Zone, New Zealand, and from El Tatio, Chile, provide an opportunity to investigate evidence of extremophile life preserved in siliceous hot spring deposits, or sinters, interpreted as analogs for early life on Earth and possibly Mars. Synchrotron-μXRF, electron microprobe analysis, Raman spectroscopy, and optical microscopy are used in a coordinated approach to identify corroborating textural and chemical (organic, inorganic) evidence of life in these modern, opaline (amorphous) siliceous materials. Fluid mobile elements, such as As and Sr, track the growth history of the digitate structures. Trace element enrichments of Ca, Al, Ga, +/ Fe, Mn, As, Rb, Cs, and Sr, are identified in silicified sheaths of microbial filaments embedded within the sinter. In contrast, silicified diatoms in some sinter samples show no trace element enrichment. Gallium enrichments have also been observed in other 16 ka and Jurassic (150 Ma) microbial palisade sinter textures, suggesting the potential for preservation through geologic time, even after recrystallization to quartz. Raman analysis reveals spectra of organics, consistent with pigments for UV protection in cyanobacteria, in silicified sheaths around microbial filaments and are co-located with trace metal enrichments in digitate structures. Due to spectral bands, the location of these molecules (i.e., in the sheaths), and the sampling locations, we ascribe the spectra to scytonemin and carotenoid class molecules. The combined analytical approach outlined here provides a robust means to assess the validity of novel biosignatures, with application to the exploration of Mars, where preservation of opaline silica in >3.6 Ga deposits has the potential to preserve a range of microbial biosignatures.
publishDate 2024
dc.date.none.fl_str_mv 2024-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/238344
Nersezova, Ema E.; Rowe, Michael C.; Campbell, Kathleen A.; Langendam, Andrew; Tollemache, Cherie; et al.; Trace metal and organic biosignatures in digitate stromatolites from terrestrial siliceous hot spring deposits: Implications for the exploration of martian life; Elsevier Science; Chemical Geology; 661; 9-2024; 1-17
0009-2541
CONICET Digital
CONICET
url http://hdl.handle.net/11336/238344
identifier_str_mv Nersezova, Ema E.; Rowe, Michael C.; Campbell, Kathleen A.; Langendam, Andrew; Tollemache, Cherie; et al.; Trace metal and organic biosignatures in digitate stromatolites from terrestrial siliceous hot spring deposits: Implications for the exploration of martian life; Elsevier Science; Chemical Geology; 661; 9-2024; 1-17
0009-2541
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0009254124002742
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemgeo.2024.122194
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613397064187904
score 13.070432